ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
  • 2
  • 3
    Publication Date: 2008-11-01
    Print ISSN: 0360-3199
    Electronic ISSN: 1879-3487
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Marine and Petroleum Geology 66 (2015): 434-450, doi:10.1016/j.marpetgeo.2015.02.033.
    Description: Natural hydrate-bearing sediments from the Nankai Trough, offshore Japan, were studied using the Pressure Core Characterization Tools (PCCTs) to obtain geomechanical, hydrological, electrical, and biological properties under in situ pressure, temperature, and restored effective stress conditions. Measurement results, combined with index-property data and analytical physics-based models, provide unique insight into hydrate-bearing sediments in situ. Tested cores contain some silty-sands, but are predominantly sandy- and clayey-silts. Hydrate saturations Sh range from 0.15 to 0.74, with significant concentrations in the silty-sands. Wave velocity and flexible-wall permeameter measurements on never-depressurized pressure-core sediments suggest hydrates in the coarser-grained zones, the silty-sands where Sh exceeds 0.4, contribute to soil-skeletal stability and are load-bearing. In the sandy- and clayey-silts, where Sh 〈 0.4, the state of effective stress and stress history are significant factors determining sediment stiffness. Controlled depressurization tests show that hydrate dissociation occurs too quickly to maintain thermodynamic equilibrium, and pressure–temperature conditions track the hydrate stability boundary in pure-water, rather than that in seawater, in spite of both the in situ pore water and the water used to maintain specimen pore pressure prior to dissociation being saline. Hydrate dissociation accompanied with fines migration caused up to 2.4% vertical strain contraction. The first-ever direct shear measurements on never-depressurized pressure-core specimens show hydrate-bearing sediments have higher sediment strength and peak friction angle than post-dissociation sediments, but the residual friction angle remains the same in both cases. Permeability measurements made before and after hydrate dissociation demonstrate that water permeability increases after dissociation, but the gain is limited by the transition from hydrate saturation before dissociation to gas saturation after dissociation. In a proof-of-concept study, sediment microbial communities were successfully extracted and stored under high-pressure, anoxic conditions. Depressurized samples of these extractions were incubated in air, where microbes exhibited temperature-dependent growth rates.
    Description: PCCTs were developed with funding to Georgia Tech from the DOE/Chevron Joint Industry Project (JIP), with additional funds from the Joint Oceanographic Institutions, Inc. The JIP also funded the Georgia Tech participation in Sapporo. USGS participation in Sapporo was funded through a technical assistance agreement with Chevron (TAA-12-2135/CW928359). Some USGS developments on the IPTC were funded under Interagency Agreement DE-FE0002911 with the U.S. Department of Energy, with additional support from the U.S. Geological Survey. Core acquisition and Japanese participation in this study was supported by the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) to carry out Japan's Methane Hydrate R&D Program conducted by the Ministry of Economy, Trade and Industry (METI).
    Keywords: Methane hydrate ; Hydrate-bearing sediment ; Nankai Trough ; Physical properties ; Pressure core
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Reviews of Geophysics 47 (2009): RG4003, doi:10.1029/2008RG000279.
    Description: Methane gas hydrates, crystalline inclusion compounds formed from methane and water, are found in marine continental margin and permafrost sediments worldwide. This article reviews the current understanding of phenomena involved in gas hydrate formation and the physical properties of hydrate-bearing sediments. Formation phenomena include pore-scale habit, solubility, spatial variability, and host sediment aggregate properties. Physical properties include thermal properties, permeability, electrical conductivity and permittivity, small-strain elastic P and S wave velocities, shear strength, and volume changes resulting from hydrate dissociation. The magnitudes and interdependencies of these properties are critically important for predicting and quantifying macroscale responses of hydrate-bearing sediments to changes in mechanical, thermal, or chemical boundary conditions. These predictions are vital for mitigating borehole, local, and regional slope stability hazards; optimizing recovery techniques for extracting methane from hydrate-bearing sediments or sequestering carbon dioxide in gas hydrate; and evaluating the role of gas hydrate in the global carbon cycle.
    Description: This work is the product of a Department of Energy (DOE)–sponsored Physical Property workshop held in Atlanta, Georgia, 16–19 March 2008. The workshop was supported by Department of Energy contract DE-AI21-92MC29214. U.S. Geological Survey contributions were supported by the Gas Hydrate Project of the U.S. Geological Survey's Coastal and Marine Geology Program. Lawrence Berkeley National Laboratory contributions were supported by the Assistant Secretary for Fossil Energy, Office of Oil and Natural Gas, through the National Energy Technology Laboratory of the U.S. DOE under contract DE-AC02-05CH11231. Georgia Institute of Technology contributions were supported by the Goizueta Foundation, DOE DE-FC26-06NT42963, and the DOE-JIP administered by Chevron award DE-FC26-610 01NT41330. Rice University contributions were supported by the DOE under contract DE-FC26-06NT42960.
    Keywords: Physical properties ; Hydrate-bearing sediment ; Gas hydrate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 86 (1999), S. 6746-6751 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Ni-based under bump metallization (UBM) is of interest in low cost flip chip technology primarily due to a slower chemical reactions with high-Sn solders such as eutectic SnPb as compared to Cu-based UBM. We studied wetting behaviors and interfacial reactions of the eutectic 63Sn–37Pb on Ni foils and Ni/Ti thin films using transmission electron microscopy (TEM), scanning electron microscopy, and energy dispersion x-ray analysis. Wetting angle, morphology of solder surface, and the rate of consumption of Ni have been studies as a function of reflow time at the temperatures of 200, 220, and 240 °C. From the TEM analysis, we found that Ni forms a single layer of scallop-type Ni3Sn4 compound with the eutectic SnPb. During the isothermal annealing, we observed the spalling of Ni3Sn4 compound from the Ni/Ti thin films. The spalling phenomenon is similar to that of Cu6Sn5 from the Cu/Cr thin films, yet the rate is slower. The spalling of Ni–Sn compound eventually caused dewetting of the molten solder from the Ti surface. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 88 (2000), S. 6359-6363 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The morphology of interfacial reaction products between four lead-free solder alloys on electroless Ni–P was characterized. The four Pb-free solders were 99.3Sn0.7Cu, 95.5Sn3.8Ag0.7Cu, 96.5Sn3.5Ag, and 96Sn2Ag2Bi (in wt%) alloys. After reflow, the interfacial intermetallics in the first two solders that contain Cu (99.3Sn0.7Cu and 95.5Sn3.8Ag0.7Cu) had good adhesion with electroless Ni–P. However, the 96.5Sn3.5Ag and 96Sn2Ag2Bi alloys formed interfacial intermetallics with a needle shaped morphology that spalled off the surface of electroless Ni–P. This difference is attributed to the role of Cu in the solders (which modified the chemical potential of the interfacial intermetallics), the volume change that occurs during intermetallic formation, and the interfacial properties of the compound. In solid state aging experiments, the consumption of electroless Ni–P by intermetallic growth was not significant (approximately 1 μm) and all the intermetallics had good adhesion to the electroless Ni–P. The electroless Ni–P exhibited some damage at the outer edge of the bond pad due to stress imposed during solid state aging. Large Ag3Sn and Cu6Sn5 intermetallics were observed in the bulk of the solders (except for SnAgBi solder), and these intermetallics are discussed in terms of soldering reaction at the interface and phase equilibrium. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 86 (1999), S. 1266-1272 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In interfacial reactions, a short-circuit diffusion along grain boundaries or interfaces can be accompanied by intermetallic compound formation. The compound penetrates the grain boundaries or the interfaces. This is a generic reliability issue for layered thin film structures because it causes a decrease in adhesion strength of the thin films. We have modified Fisher's grain boundary diffusion model to include this reactive kinetic process, and an analytical solution was obtained. A t1/4 dependence of penetration is found, the same as Fisher's model. The important kinetic parameters in the solutions are a diffusion coefficient along the short-circuit path, an intrinsic interdiffusion coefficient in the compound, and a partition coefficient. A comparison between the calculated and measured data from the lateral penetration of eutectic SnPb solder along the interface between electroless Ni and oxysilicon nitride dielectric, accompanied by Ni3Sn4 compound formation, is given. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 79 (2001), S. 482-484 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The relationship between the microstructure and the mechanical tensile properties of lead-free solders and eutectic SnPb solders is presented for flip chip scale interconnects. Eutectic Sn–37Pb and Sn–0.7Cu solder (in wt %) exhibited a ductile fracture after tensile testing. Eutectic Sn–3.5Ag solder (in wt %) had greater strength and exhibited a brittle fracture at the interface. The different fracture behavior of the lead-free solders was attributed to the grain size and configuration of the intermetallics. Minor additions of alloying elements to the high Sn lead-free solder dramatically affected the microstructure and mechanical properties. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 83 (1979), S. 2809-2815 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...