ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Fluid inclusion studies of rocks from the late Archaean amphibolite-facies to granulite-facies transition zone of southern India provide support for the hypothesis that CO2,-rich H2O-poor fluids were a major factor in the origin of the high-grade terrain. Charnockites, closely associated leucogranites and quartzo-feldspathic veins contain vast numbers of large CO2-rich inclusions in planar arrays in quartz and feldspar, whereas amphibole-bearing gray gneisses of essentially the same compositions as adjacent charnockites in mixed-facies quarries contain no large fluid inclusions. Inclusions in the northernmost incipient charnockites, as at Kabbal, Karnataka, occasionally contain about 25 mol. % of immiscible H2O lining cavity walls, whereas inclusions from the charnockite massif terrane farther south do not have visibile H2OMicrothermometry of CO2 inclusions shows that miscible CH4 and N2 must be small, probably less than 10mol.%combined. Densities of CO2 increase steadily from north to south across the transitional terrane. Entrapment pressures calculated from the CO2 equation of state range from 5 kbar in the north to 7.5 kbar in the south at the mineralogically inferred average metamorphic temperature of 750°C, in quantitative agreement with mineralogic geobarometry. This agreement leads to the inference that the fluid inclusions were trapped at or near peak metamorphic conditions.Calculations on the stability of the charnockite assemblage biotite-orthopyroxene-K-feldspar-quartz show that an associated fluid phase must have less than 0.35 H2O activity at the inferred P and T conditions, which agrees with the petrographic observations. High TiO2 content of biotite stabilizes it to lower H2O activities, and the steady increase of biotite TiO2 southward in the area suggests progressive decrease of aH2O with increasing grade. Oxygen fugacities calculated from orthopyroxene-magnetite-quartz are considerably higher than the graphite CO2-O2 buffer, which explains the absence of graphite in the charnockites.The present study quantifies the nature of the vapours in the southern India granulite metamorphism. It remains to be determined whether CO2-flushing of the crust can, by itself, create large terranes of largeion lithophile-depleted granulites, or whether removal of H2O-bearing anatectic melts is essential.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The Shevaroy Hills of northern Tamil Nadu, southern India, expose the highest-grade granulites of a prograde amphibolite facies to granulite facies deep-crustal section of Late Archaean age. These highly oxidized quartzofeldspathic garnet charnockites generally show minor high-TiO2 biotite and amphibole as the only hydrous minerals and are greatly depleted in the incompatible elements Rb and Th. Peak metamorphic temperatures (garnet–orthopyroxene) and pressures (garnet–orthopyroxene–plagioclase–quartz) are near 750 °C and 8 kbar, respectively. Pervasive veinlets of K-feldspar exist throughout dominant plagioclase in each sample and show clean contact with orthopyroxene. They are suggested to have been produced by a low H2O activity, migrating fluid phase under granulite facies conditions, most likely a concentrated chloride/carbonate brine with high alkali mobility accompanied by an immiscible CO2-rich fluid. Silicate, oxide and sulphide mineral assemblages record high oxygen fugacity. Pyroxenes in the felsic rocks have high Mg/(Mg+Fe) (0.5–0.7). The major oxide mineral is ilmenite with up to 60 mole per cent exsolved hematite. Utilizing three independent oxygen barometers (ferrosilite–magnetite–quartz, ferrosilite–hematite–quartz and magnetite–hematite) in conjunction with garnet–orthopyroxene exchange temperatures, samples with XIlmHm〉0.1 yield a consistent oxygen fugacity about two log units above fayalite stability. Less oxidized samples (XIlmHm〈0.1) show some scatter with indications of having equilibrated under more reducing conditions. Temperature-f (O2 ) arrays result in self consistent conditions ranging from 660 °C and 10−16 bar to 820 °C and 10−11.5 bar. These trends are confirmed by calculations based on the assemblage clinopyroxene–orthopyroxene–magnetite–ilmenite using the QUIlF program. In the most oxidized granulite samples (XIlmHm〉0.4) pyrite is the dominant sulphide and pyrrhotite is absent. Pyrite grains in these samples have marginal alteration to magnetite along the rims, signifying a high-temperature oxidation event. Moderately oxidized samples (0.1〈XIlmHm〈0.4) have abundant co-existing pyrrhotite, pyrite and magnetite. The most reduced granulite samples have pyrrhotite as the dominant sulphide with little or no pyrite and no coexisting magnetite. Chalcopyrite is a common accessory mineral of pyrite and pyrrhotite in all the samples. Textures in some samples suggest that it formed as an exsolution product from pyrrhotite. Extensive vein networks of magnetite and pyrite, associated principally with the pyroxene and amphibole, give evidence for a pervasive, highly oxidizing fluid phase. Thermodynamic analysis of the assemblage pyrrhotite, pyrite and magnetite yields consistent high oxidation states at 700–800 °C and 8 kbar. The oxygen fugacity in our most oxidized pyrrhotite-bearing sample is 10−12.65 bar at 770 °C. There are strong indications that the Shevaroy Hills granulites recrystallized in the presence of an alkali-rich, low H2O-activity fluid, probably a concentrated brine. It cannot be demonstrated at present whether the high oxidation states were set by initially oxidized protoliths or effected by the postulated fluids. The high correspondence of maximally Rb-depleted samples with the highest recorded oxidation states suggests that the Rb depletion event coincided with the oxidation event, probably during breakdown of biotite to orthopyroxene+K-feldspar. We speculate that these alterations were effected by exhalations from deep-seated alkali basalts, which provided both heat and high oxygen fugacity, low aH2O fluids. It will be of interest to determine whether greatly Rb-depleted granulites in other Precambrian terranes show similar highly-oxidizing signatures.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 278 (1979), S. 511-514 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Arrested charnockitic conversion of amphibolitic gneiss at Kabbaldurga, Karnataka State, south India, was studied mineralogically. Iron-rich pyroxenes were generated from amphibole in patches and stringers without melting. The dark colour of charnockite arises from numerous tiny veins of chlorite ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 96 (1987), S. 225-244 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Arrested prograde charnockite formation in quartzofeldspathic gneisses is widespread in the high-grade terrains of southern India and Sri Lanka. Two major kinds of orthopyroxene-producing reactions are recognized. Breakdown of calcic amphibole by reaction with biotite and quartz in tonalitic/granitic “gray gneiss” produced the regional orthopyroxene isograd, manifest in charnockitic mottling and veining of “mixed-facies” exposures, as at Kabbal, Karnataka, and in the Kurunegala District of the Sri Lanka Central Highlands. Chemical and modal analyses of carefully chosen immediately-adjacent amphibole gneiss and charnockite pairs show that the orthopyroxene is produced by an open system reaction involving slight losses of CaO, MgO and FeO and gains of SiO2 and Na2O. Rb and Y are depleted in the charnockite. Another kind of charnockitization is found in paragneisses throughout the southern high-grade area, and involves the reaction of biotite and quartz±garnet to produce orthopyroxene and K-feldspar. Although charnockite formation along shears and other deformation zones at such localities as Ponmudi, Kerala is highly reminiscent of Kabbal, close pair analyses are not as suggestive of open-system behavior. This type of charnockite formation is found in granulite facies areas where no prograde amphibole-bearing gneisses exist and connotes a higher-grade reaction than that of the orthopyroxene isograd. Metamorphic conditions of both Kabbaltype and Ponmudi-type localities were 700°–800° C and 5–6 kbar. Lower P(H2O) in the Ponmudi-type metamorphism was probably the definitive factor. CO2-rich fluid inclusions in quartz from the Kabbaltype localities support the concept that this type of charnockite formation was driven by influx of CO2 from some deep-seated source. The open-system behavior and high oxidation states of the metamorphism are in accord with the CO2-streaming hypothesis. CO2-rich inclusions in graphitebearing charnockites of the Ponmudi type, however, commonly have low densities and compositions not predictable by vapor-mineral equilibrium calculations. These inclusions may have suffered post-metamorphic H2 leakage or some systematic contamination. Neither the close-pair analyses nor the fluid inclusions strongly suggest an influx of CO2 drove charnockite formation of the Ponmudi type. The possibility remains that orthopyroxene and CO2-rich fluids were produced by reaction of biotite with graphite without intervention of fluids of external origin. Further evidence, such as oxygen isotopes, is necessary to test the CO2-streaming hypothesis for the Ponmudi-type localities.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Sittampundi and Bhavani Archean layered meta-anorthosite complexes occur as tectonic lenses within the Cauvery shear zone (CSZ), a crustal scale shear dividing the Precambrian granulite crust of south India into late Archean (〉 2.5 Ga) and Proterozoic (c. 0.55 Ga) blocks. They and their host supracrustal-gneiss rocks record at least two stages of tectonometamorphic history. The first is seen as regional scale refolded isoclinal folds and granulite metamorphism (D1-M1) while the second stage is associated with dominantly E–W dextral transcurrent shearing and metamorphic recrystallisation (D2-MCSZ). Whole rock Sm-Nd isochrons for several comagmatic rocks of the layered complexes yield concordant ages: Sittampundi – 2935±60 Ma, ɛNd + 1.85±0.16 and Bhavani – 2899±28 Ma, ɛNd + 2.18±0.14 (2σ errors). Our Sm-Nd results suggest that: (1) the magmatic protoliths of the Sittampundi and Bhavani layered complexes were extracted from similar uniform and LREE depleted mantle sources; (2) M1 metamorphism occurred soon after emplacement at c.3.0 Ga ago. P-T estimates on garnet granulites from the Sittampundi complex characterise the MCSZ as a high-P event with metamorphic peak conditions of c. 11.8 kbar and 830°C (minimum). The MCSZ is associated with significant isothermal decompression of the order of 4.5–3.5 kbar followed by static high-temperature rehydration and retrogression around 600°C. The timing of MCSZ is inferred to be Neoproterozoic at c. 730 Ma based on a whole rock-garnet-plagioclase-hornblende Sm-Nd isochron age for a garnet granulite from the Sittampundi complex and its agreement with the 800–600 Ma published age data on post-kinematic plutonic rocks within the CSZ. These results demonstrate that the Cauvery shear zone is a zone of Neoproterozoic reworking of Archean crust broadly similar to the interface between the Napier and Rayner complexes of the East Antarctic shield in a model Proterozoic Gondwana supercontinent.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 79 (1982), S. 130-149 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Amphibolite facies metamorphic grade gives way southward to the granulite grade in southern Karnataka, as acid gneisses develop charnockite patches and streaks and basic enclaves develop pyroxenes. Petrologic investigations in the transitional zone south of Mysore have established the following points: 1) The transition is prograde. Amphibole-bearing gneisses intimately associated with charnockite at Kabbal and several similar localities are not retrogressive after charnockite, as proved by patchy obliteration of their foliation by transgressive, very coarse-grained charnockite, high fluorine content of biotite and amphibole in gneisses, and high large-ion lithophile element contents in gneisses and charnockites. These features are in contrast to very low fluorine in retrogressive amphiboles and biotites, very low large-ion lithophile element contents, and zonal bleaching of charnockite, in clearly retrogressive areas, as at Bhavani Sagar, Tamil Nadu. 2) Metamorphic temperatures in the transitional areas were 700°–800° C, pressures were 5–7 kbar, and H2O pressures were 0.1–0.3 times total pressures, based on thermodynamic calculations using mineral analyses. Dense CO2-rich fluid inclusions in the Kabbal rocks confirm the low H2O pressures at the first appearance of orthopyroxene. Farther to the south, in the Nilgiri Hills and adjacent granulite massif areas, peak metamorphic temperatures were 800°–900° C, pressures were 7–9 kbar, and water pressures were very low, so that primary biotites and amphiboles (those with high F contents) are rare. 3) The incipient granulite-grade metamorphism of the transitional areas was introduced by a wave of anatexis and K-metasomatism. This process was arrested by drying out under heavy CO2 influx. Charnockites so formed are hybrids of anatectic granite and metabasite, of metabasite and immediately adjacent gneiss, or are virtually isochemical with pre-existing gneiss despite gross recrystallization to granulite mineralogy. These features show that partial melting and metasomatism are attendant, rather than causative, in charnockite development. Copious CO2 from a deep-crustal or mantle source pushed ahead of it a wave of more aqueous solutions which promoted anatexis. Granulite metamorphism of both neosome and paleosome followed. The process is very similar to that deduced for the Madras granulites by Weaver (1980). The massif charnockites, for the most part extremely depleted in lithophile minor elements, show many evidences of having gone through the same process. A major problem remaining to be solved is the origin of the large amount of CO2 needed to charnockitize significant portions of the crust. The most important possibilities include CO2 from carbonate minerals in a mantle “hot spot” or diapir, from emanations from a crystallizing basaltic underplate, or from shelf sediments trapped at the continent-continent interface in continental overthrusting. Ancient granulite massifs may be such suture zones of continental convergence.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1986-03-01
    Print ISSN: 0022-1376
    Electronic ISSN: 1537-5269
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1994-07-01
    Print ISSN: 0022-1376
    Electronic ISSN: 1537-5269
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1993-06-01
    Description: Within amphibolite facies Peninsular gneisses in the south of the Dharwar craton, units of Sargur supracrustal rocks contain ultrabasic enclaves. One of these enclaves is an orthopyroxenite which comprises bronzite, spinel and minor phlogopite preserving coarse-grained, relic textures of probable igneous origin. After incorporation into the gneisses the enclave evolved through several distinct stages, elucidation of which allow an assessment of its metamorphic history.Firstly, deformation during closed system, anhydrous recrystallisation caused the coarse-grained textures to be partially overprinted by similar mineral assemblages but with a granoblastic texture. Secondly, open system hydration caused retrogression of the bronzite to alumino-gedrite at the margins of the enclave. Subsequently, the penetration of these fluids along grain boundaries caused reactions between spinel and bronzite to produce reaction pockets carrying assemblages of peraluminous sapphirine associated with cordierite and talc. The differences in the mineral assemblages in each pocket coupled with slight variations in their chemistry, suggest that equilibrium did not develop over the outcrop. Because sapphirine + magnesite is present in some pockets, it is evident that CO2 was also a component of the fluid.Phase relations from the MASH portion of the FMASH system, to which the chemistry of the reaction pockets approximates, suggest that the hydrous metamorphism causing the changes depended upon the assemblage enstatite + spinel + vapour which exists at PT conditions above the position of I16, ∼760°C at 3 kbar and below I21 at ∼765°C at 5.6 kbar (Seifert, 1974, 1975), where sapphirine is replaced by kornerupine. The suggested path of reaction occurred between I18 and I21. Subsequent reactions related to I20 cause the formation of cordierite. Talc formation has to be modelled in a different reaction grid.The metamorphism recorded by these reactions is thus at a maximum of amphibolite facies and is interpreted to have formed during the uplift and cooling history of the gneiss complex when hydrous fluids were free to migrate. Given the complex high-grade metamorphic history of this part of the Dharwar craton this event is likely to be late Archaean or Palaeoproterozoic in age.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1984-06-01
    Description: Gabbroic-textured shonkinitic rocks of unknown age cut deformed Archaean dunites and peridotites in the area immediately north of Salem. Magnesite formation post-dates their intrusion. The location of these rocks and the magnesite is thought to be controlled by the intersection of two major basement lineaments. A sequence of crystallization of the minerals and rocks from early undersaturated to late oversaturated rocks is established. Compositions of the coexisting mineral phases are reported here for the first time. Clinopyroxenes, which are relatively unevolved, commonly coexist with olivine (chrysolite) and sanidine. Bronzite, often intergrown with magnetite and green spinel, is occasionally present. In the most undersaturated rocks nepheline-sanidine fingerprint intergrowths occur, whilst perthitic sanidine, albitic plagioclase, and quartz are present in over-saturated rocks. Late in the crystallization sequence, in over-saturated rocks, PH2O appears to have increased allowing the formation of amphibole as well as clinopyroxene.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...