ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 1987-11-01
    Print ISSN: 0167-9295
    Electronic ISSN: 1573-0794
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1988-05-01
    Print ISSN: 0167-9295
    Electronic ISSN: 1573-0794
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1985-06-01
    Print ISSN: 0016-8025
    Electronic ISSN: 1365-2478
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical prospecting 33 (1985), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Notes: Four methods for the determination of Q in marine sediments are compared: two traditional methods, i.e. the risetime and the spectral ratio method, and two newly established ones, the spectrum modeling and the wavelet modeling method. In the latter one Q and the reflection time T are determined simultaneously, which gives a much better accuracy for T than reading it from the seismogram. The risetime and the spectral ratio methods are used for obtaining Q directly from the data. The principle of the modeling methods is to calculate the effect of absorption and dispersion on a reference wavelet or its spectrum for various values of Q, and the best fit between the observed and the calculated data leads to the optimum result. Numerical tests on synthetic data show that a precision of more than 25% for data containing noise or superposed arrivals can hardly be achieved; in any case, wavelet modeling is the superior method. Application to data from a vertical reflection profile in the Baltic Sea yields Q in the range of 15–100 for different layers, which is to be expected in the sedimentary environment of this area.The computations were performed in the Computer Center of Kiel University. The authors thank R. Meissner for his comments on the manuscript.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Earth, moon and planets 41 (1988), S. 127-139 
    ISSN: 1573-0794
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Tepev Mons is a large volcanic structure of about 250 km in diameter with an elevation of 5 km above the surroundings, located at the southwestern edge of Bell Regio. It is surrounded by a moat with a depth of about 0.5 km. If this moat is considered to be caused by bending of the lithosphere due to the load of the volcano, then elastic bending models give limits for the effective flexural rigidity FR and the effective elastic thickness of the lithosphere L: 2 x 1023 Nm ≲ FR ≲ 3 x 1024 Nm and 30 km ≤ L ≤ 100 km. High flexural rigidities are associated with small depressions and large thicknesses of the lithosphere and vice versa.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Earth, moon and planets 39 (1987), S. 251-273 
    ISSN: 1573-0794
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Bell Regio is a highland fragment south of Ishtar Terra, extending 1300 km in N-S direction and 900 km in E-W direction. South of this region Eisila Regio is located with an E-W extension of 8000 km and a width of 2000 km. Bell Regio consists of two large massifs: a northern massif with maximum altitudes of 2.5 to 3.0 km above the 6051 km datum and with a semi-corona (other coronae on Venus are associated with volcanic-tectonic processes) and a southern massif with a maximum of 4 to 4.5 km above the datum. The possible shield volcano Tepev Mons of 250 km in diameter is superimposed on the southern massif. It shows a radar dark crater of 40 km diameter on its eastern flank, a crater-like feature of 15 km diameter on the top and a radar bright area extending from the dark crater across the summit. South of Tepev Mons are several volcanic structures with summit depressions. The crest of Bell Regio exhibits a N-S extending fossa system. The whole fresh appearing plain-like area has been classified as rather young compared to other units. Gravity data show a maximum of 33 mGal at Bell Regio and 35 mGal at eastern Eisila Regio. The basins north and south of the highland fragments are associated with gravity lows. Density models have been calculated along the gravity profile Rev. 163 of Pioneer Venus Orbiter across Bell and Eisila Regiones assuming Airy isostatic compensation of the topography and considering several boundary conditions (e.g. mean crustal thickness T〈- 100 km). There are two groups of density models in the case of Airy compensation. In the first group global total compensation is assumed along the profile and regional partial compensation for Bell and Eisila Regiones. This solution gives a range of possible models with 10 km 〈- T 〈- 100 km and a partial compensation for Bell and Eisila Regiones between 12% and 55%. Thus these two highland fragments show subsurface surplus masses. The second group of models considers for the whole profile total compensation with a global T 〈- 100 km and a regional very large depth of compensation for Bell and Eisila Regiones, i.e. T 〉 100 km. The highland of Beta Regio has, like Bell Regio, a N-S rifting system, volcanic structures, a fresh appearing plain-like surface and either deep-seating compensating masses or near surface surplus masses. Bell can be considered as little sister of Beta. The geological and geophysical results imply a volcanic-tectonic uplift over a hot spot. The conditions of Atla Regio in eastern Aphrodite Terra are similar. Thus the existence of volcanic-tectonic uplifts support the important role of hot spot volcanism on Venus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...