ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-07
    Description: In Saccharomyces cerevisiae, the silent mating loci are repressed by their assembly into heterochromatin. The formation of this heterochromatin requires a cell cycle event that occurs between early S phase and G(2)/M phase, which has been widely assumed to be DNA replication. To determine whether DNA replication through a silent mating-type locus, HMRa, is required for silencing to be established, we monitored heterochromatin formation at HMRa on a chromosome and on a nonreplicating extrachromosomal cassette as cells passed through S phase. Cells that passed through S phase established silencing at both the chromosomal HMRa locus and the extrachromosomal HMRa locus with equal efficiency. Thus, in contrast to the prevailing view, the establishment of silencing occurred in the absence of passage of the DNA replication fork through or near the HMR locus, but retained a cell cycle dependence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kirchmaier, A L -- Rine, J -- NIHF32GM19392/GM/NIGMS NIH HHS/ -- NIHGM31105/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2001 Jan 26;291(5504):646-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Genetics and Development, Department of Molecular and Cell Biology, University of California, 401 Barker Hall, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11158676" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Chromosomes, Fungal/metabolism ; DNA Nucleotidyltransferases/metabolism ; *DNA Replication ; DNA, Fungal/biosynthesis ; DNA-Binding Proteins/metabolism ; Fungal Proteins/metabolism ; G1 Phase ; *Gene Silencing ; Genes, Fungal ; Genes, Mating Type, Fungal ; Heterochromatin/chemistry/*metabolism ; Lipoproteins/genetics ; Pheromones ; Recombinant Fusion Proteins/metabolism ; Replication Origin ; *S Phase ; Saccharomyces cerevisiae/*genetics/metabolism ; Saccharomyces cerevisiae Proteins ; *Silent Information Regulator Proteins, Saccharomyces cerevisiae ; Trans-Activators/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1997-06-06
    Description: Silencing of transcription in Saccharomyces cerevisiae has several links to DNA replication, including a role for the origin recognition complex (ORC), the DNA replication initiator, in both processes. In addition, the establishment of silencing at the HML and HMR loci requires cells to pass through the S phase of the cell cycle. Passage through S phase was required for silencing of HMR even under conditions in which ORC itself was no longer required. The requirement for ORC in silencing of HMR could be bypassed by tethering the Sir1 protein to the HMR-E silencer. However, ORC had a Sir1-independent role in transcriptional silencing at telomeres. Thus, the role of ORC in silencing was separable from its role in initiation, and the role of S phase in silencing was independent of replication initiation at the silencers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fox, C A -- Ehrenhofer-Murray, A E -- Loo, S -- Rine, J -- GM31105/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Jun 6;276(5318):1547-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, Division of Genetics, 401 Barker Hall, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9171055" target="_blank"〉PubMed〈/a〉
    Keywords: *Aldose-Ketose Isomerases ; Chromatin/physiology ; Chromosomes, Fungal/physiology ; *DNA Replication ; DNA, Fungal/genetics/physiology ; DNA-Binding Proteins/*physiology ; Fungal Proteins/genetics/*physiology ; *Gene Expression Regulation, Fungal ; Origin Recognition Complex ; Recombinant Fusion Proteins/genetics ; S Phase/*physiology ; Saccharomyces cerevisiae/cytology/*genetics ; *Saccharomyces cerevisiae Proteins ; *Silent Information Regulator Proteins, Saccharomyces cerevisiae ; Telomere ; Trans-Activators/genetics/*physiology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1990-07-13
    Description: The heterotrimeric guanine nucleotide-binding regulatory proteins act at the inner surface of the plasma membrane to relay information from cell surface receptors to effectors inside the cell. These G proteins are not integral membrane proteins, yet are membrane associated. The processing and function of the gamma subunit of the yeast G protein involved in mating-pheromone signal transduction was found to be affected by the same mutations that block ras processing. The nature of these mutations implied that the gamma subunit was polyisoprenylated and that this modification was necessary for membrane association and biological activity. A microbial screen was developed for pharmacological agents that inhibit polyisoprenylation and that have potential application in cancer therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Finegold, A A -- Schafer, W R -- Rine, J -- Whiteway, M -- Tamanoi, F -- CA 41996/CA/NCI NIH HHS/ -- GM 07183/GM/NIGMS NIH HHS/ -- GM 35827/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Jul 13;249(4965):165-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University of Chicago, IL 60637.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1695391" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Membrane/metabolism ; Cloning, Molecular ; Epitopes/genetics ; GTP-Binding Proteins/genetics/*metabolism ; Hemagglutinins, Viral/immunology ; Lovastatin/pharmacology ; Mevalonic Acid/pharmacology ; Molecular Sequence Data ; Mutation ; Oncogene Protein p21(ras)/genetics/*metabolism ; Orthomyxoviridae/immunology ; Protein Processing, Post-Translational ; Saccharomyces cerevisiae/*genetics/metabolism ; Signal Transduction ; Suppression, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-04-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rine, J -- Kenyon, C -- New York, N.Y. -- Science. 1989 Apr 14;244(4901):235.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17835358" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1990-09-07
    Description: The post-translational processing of the yeast a-mating pheromone precursor, Ras proteins, nuclear lamins, and some subunits of trimeric G proteins requires a set of complex modifications at their carboxyl termini. This processing includes three steps: prenylation of a cysteine residue, proteolytic processing, and carboxymethylation. In the yeast Saccharomyces cerevisiae, the product of the DPR1-RAM1 gene participates in this type of processing. Through the use of an in vitro assay with peptide substrates modeled after a presumptive a-mating pheromone precursor, it was discovered that mutations in DPR1-RAM1 cause a defect in the prenylation reaction. It was further shown that DPR1-RAM1 encodes an essential and limiting component of a protein prenyltransferase. These studies also implied a fixed order of the three processing steps shared by prenylated proteins: prenylation, proteolysis, then carboxymethylation. Because the yeast protein prenyltransferase could also prenylate human H-ras p21 precursor, the human DPR1-RAM1 analogue may be a useful target for anticancer chemotherapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schafer, W R -- Trueblood, C E -- Yang, C C -- Mayer, M P -- Rosenberg, S -- Poulter, C D -- Kim, S H -- Rine, J -- GM21328/GM/NIGMS NIH HHS/ -- GM25521/GM/NIGMS NIH HHS/ -- GM35827/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Sep 7;249(4973):1133-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2204115" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Compartmentation ; Cholesterol/*metabolism ; DNA Mutational Analysis ; Dimethylallyltranstransferase/*metabolism ; Fungal Proteins/metabolism ; Genes, Fungal ; *Hemiterpenes ; Humans ; In Vitro Techniques ; Molecular Sequence Data ; Oncogene Protein p21(ras)/*metabolism ; Organophosphorus Compounds/metabolism ; Peptides/*metabolism ; Polyisoprenyl Phosphates/metabolism ; Protein Processing, Post-Translational ; Restriction Mapping ; Saccharomyces cerevisiae/*physiology ; Sesquiterpenes ; Transferases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-05-01
    Description: A eukaryotic chromosomal origin of replication was identified in the yeast Saccharomyces cerevisiae. By several criteria, including map position, deletion analysis, and a synthetic form of saturation mutagenesis, the origin co-localized with the HMR-E silencer, which is a DNA element that represses transcription of the adjacent genes. A specific site within the silencer was required for both initiation of chromosomal replication and for repression of transcription. This analysis directly demonstrates that initiation of eukaryotic chromosomal replication is dependent on specific sequence elements and that a particular element can act in both initiation of chromosomal replication and regulation of transcription.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rivier, D H -- Rine, J -- ES07075/ES/NIEHS NIH HHS/ -- GM 31105/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1992 May 1;256(5057):659-63.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1585179" target="_blank"〉PubMed〈/a〉
    Keywords: Chromosome Mapping ; *DNA Replication ; DNA, Fungal/biosynthesis ; *Gene Expression Regulation, Fungal ; Genes, Fungal ; Mutagenesis ; Nucleic Acid Hybridization ; *Regulatory Sequences, Nucleic Acid ; Saccharomyces cerevisiae/*genetics ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1989-07-28
    Description: The activity of an oncoprotein and the secretion of a pheromone can be affected by an unusual protein modification. Specifically, posttranslational modification of yeast a-factor and Ras protein requires an intermediate of the cholesterol biosynthetic pathway. This modification is apparently essential for biological activity. Studies of yeast mutants blocked in sterol biosynthesis demonstrated that the membrane association and biological activation of the yeast Ras2 protein require mevalonate, a precursor of sterols and other isoprenes such as farnesyl pyrophosphate. Furthermore, drugs that inhibit mevalonate biosynthesis blocked the in vivo action of oncogenic derivatives of human Ras protein in the Xenopus oocyte assay. The same drugs and mutations also prevented the posttranslational processing and secretion of yeast a-factor, a peptide that is farnesylated. Thus, the mevalonate requirement for Ras activation may indicate that attachment of a mevalonate-derived (isoprenoid) moiety to Ras proteins is necessary for membrane association and biological function. These observations establish a connection between the cholesterol biosynthetic pathway and transformation by the ras oncogene and offer a novel pharmacological approach to investigating, and possibly controlling, ras-mediated malignant transformations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schafer, W R -- Kim, R -- Sterne, R -- Thorner, J -- Kim, S H -- Rine, J -- CA-45593/CA/NCI NIH HHS/ -- GM21841/GM/NIGMS NIH HHS/ -- GM31105/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1989 Jul 28;245(4916):379-85.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2569235" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cells, Cultured ; Drosophila ; Electrophoresis, Polyacrylamide Gel ; Fungal Proteins/genetics/*metabolism ; *Genes, ras ; Humans ; Hydroxymethylglutaryl CoA Reductases/genetics ; Hydroxymethylglutaryl-CoA Synthase/genetics ; Immunoblotting ; Mevalonic Acid/biosynthesis ; Molecular Sequence Data ; Peptides/genetics/metabolism ; Precipitin Tests ; Protein Processing, Post-Translational ; Proto-Oncogene Proteins/genetics/*metabolism ; Proto-Oncogene Proteins p21(ras) ; Saccharomyces cerevisiae/genetics/physiology ; *Saccharomyces cerevisiae Proteins ; *Suppression, Genetic ; Xenopus ; *ras Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-11-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Anderson, Winston A -- Amasino, Richard M -- Ares, Manuel Jr -- Banerjee, Utpal -- Bartel, Bonnie -- Corces, Victor G -- Drennan, Catherine L -- Elgin, Sarah C R -- Epstein, Irving R -- Fanning, Ellen -- Guillette, Louis J Jr -- Handelsman, Jo -- Hatfull, Graham F -- Hoy, Ronald Raymond -- Kelley, Darcy -- Leinwand, Leslie A -- Losick, Richard -- Lu, Yi -- Lynn, David G -- Neuhauser, Claudia -- O'Dowd, Diane K -- Olivera, Toto -- Pevzner, Pavel -- Richards-Kortum, Rebecca R -- Rine, Jasper -- Sah, Robert L -- Strobel, Scott A -- Walker, Graham C -- Walt, David R -- Warner, Isiah M -- Wessler, Sue -- Willard, Huntington F -- Zare, Richard N -- New York, N.Y. -- Science. 2011 Nov 11;334(6057):760-1. doi: 10.1126/science.334.6057.760-b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22076362" target="_blank"〉PubMed〈/a〉
    Keywords: *Curriculum ; *Education, Premedical ; *Educational Status ; *School Admission Criteria ; *Schools, Medical ; Universities
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-03-21
    Description: Prenylated proteins contain a covalently linked cholesterol intermediate near their carboxyl-termini. Maturation of most prenylated proteins involves proteolytic removal of the last three amino acids. Two genes in Saccharomyces cerevisiae, RCE1 and AFC1, were identified that appear to be responsible for this processing. The Afc1 protein is a zinc protease that participates in the processing of yeast a-factor mating pheromone. The Rce1 protein contributes to the processing of both Ras protein and a-factor. Deletion of both AFC1 and RCE1 resulted in the loss of proteolytic processing of prenylated proteins. Disruption of RCE1 led to defects in Ras localization and signaling and suppressed the activated phenotype associated with the allele RAS2val19.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boyartchuk, V L -- Ashby, M N -- Rine, J -- GM35827/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Mar 21;275(5307):1796-800.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9065405" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Membrane/metabolism ; Endopeptidases/chemistry/genetics/*metabolism ; Fungal Proteins/*metabolism ; Genes, Fungal ; Genes, ras ; Lipoproteins/*metabolism ; *Membrane Proteins ; Metalloendopeptidases/chemistry/genetics/*metabolism ; Mutation ; Pheromones ; Proprotein Convertases ; Protein Precursors/metabolism ; *Protein Prenylation ; *Protein Processing, Post-Translational ; Saccharomyces cerevisiae/genetics/*metabolism ; *Saccharomyces cerevisiae Proteins ; Sequence Deletion ; Signal Transduction ; Substrate Specificity ; Zinc/pharmacology ; ras Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-28
    Description: The origin recognition complex (ORC), a six-subunit protein, functions as the replication initiator in the yeast Saccharomyces cerevisiae. Initiation depends on the assembly of the prereplication complex in late M phase and activation in S phase. One subunit of ORC, Orc5p, was required at G1/S and in early M phase. Asynchronous cells with a temperature-sensitive orc5-1 allele arrested in early M phase. In contrast, cells that were first synchronized in M phase, shifted to the restrictive temperature, and then released from the block arrested at the G1/S boundary. The G1/S arrest phenotype could not be suppressed by introducing wild-type Orc5p during G1. Although all orc2 and orc5 mutations were recessive in the conventional sense, this dominant phenotype was shared with other orc5 alleles and an orc2 allele. The dominant inhibition to cell-cycle progression exhibited by the orc mutants was restricted to the nucleus, suggesting that chromosomes with mutant ORC complexes were capable of sending a signal that blocked initiation on chromosomes containing functional origins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dillin, A -- Rine, J -- GM-31105/GM/NIGMS NIH HHS/ -- P30ESO1896-12/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 1998 Mar 13;279(5357):1733-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Genetics, University of California at Berkeley, 401 Barker Hall, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9497294" target="_blank"〉PubMed〈/a〉
    Keywords: CDC28 Protein Kinase, S cerevisiae/metabolism ; *Cell Cycle Proteins ; Cell Nucleus/physiology ; Chromosomes, Fungal/physiology ; Crosses, Genetic ; *DNA Replication ; DNA, Fungal/biosynthesis ; DNA-Binding Proteins/genetics/*physiology ; Fungal Proteins/physiology ; Genes, Fungal ; *Mitosis ; Mutation ; Origin Recognition Complex ; Phenotype ; *S Phase ; Saccharomyces cerevisiae/*cytology/genetics/*metabolism ; Saccharomyces cerevisiae Proteins ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...