ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-04-10
    Description: Cancer cells adapt their metabolic processes to support rapid proliferation, but less is known about how cancer cells alter metabolism to promote cell survival in a poorly vascularized tumour microenvironment. Here we identify a key role for serine and glycine metabolism in the survival of brain cancer cells within the ischaemic zones of gliomas. In human glioblastoma multiforme, mitochondrial serine hydroxymethyltransferase (SHMT2) and glycine decarboxylase (GLDC) are highly expressed in the pseudopalisading cells that surround necrotic foci. We find that SHMT2 activity limits that of pyruvate kinase (PKM2) and reduces oxygen consumption, eliciting a metabolic state that confers a profound survival advantage to cells in poorly vascularized tumour regions. GLDC inhibition impairs cells with high SHMT2 levels as the excess glycine not metabolized by GLDC can be converted to the toxic molecules aminoacetone and methylglyoxal. Thus, SHMT2 is required for cancer cells to adapt to the tumour environment, but also renders these cells sensitive to glycine cleavage system inhibition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4533874/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4533874/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Dohoon -- Fiske, Brian P -- Birsoy, Kivanc -- Freinkman, Elizaveta -- Kami, Kenjiro -- Possemato, Richard L -- Chudnovsky, Yakov -- Pacold, Michael E -- Chen, Walter W -- Cantor, Jason R -- Shelton, Laura M -- Gui, Dan Y -- Kwon, Manjae -- Ramkissoon, Shakti H -- Ligon, Keith L -- Kang, Seong Woo -- Snuderl, Matija -- Vander Heiden, Matthew G -- Sabatini, David M -- 5P30CA14051/CA/NCI NIH HHS/ -- AI07389/AI/NIAID NIH HHS/ -- CA103866/CA/NCI NIH HHS/ -- CA129105/CA/NCI NIH HHS/ -- K08 NS087118/NS/NINDS NIH HHS/ -- K08-NS087118/NS/NINDS NIH HHS/ -- K99 CA168940/CA/NCI NIH HHS/ -- P30 CA014051/CA/NCI NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R01 CA129105/CA/NCI NIH HHS/ -- R01 CA168653/CA/NCI NIH HHS/ -- R01CA168653/CA/NCI NIH HHS/ -- R37 AI047389/AI/NIAID NIH HHS/ -- T32 GM007287/GM/NIGMS NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- T32GM007287/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Apr 16;520(7547):363-7. doi: 10.1038/nature14363. Epub 2015 Apr 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA [2] Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [3] The David H. Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA [4] Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA [5] Broad Institute of Harvard and MIT, Seven Cambridge Center, Cambridge, Massachusetts 02142, USA. ; 1] The David H. Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA [2] Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA [3] Broad Institute of Harvard and MIT, Seven Cambridge Center, Cambridge, Massachusetts 02142, USA. ; Human Metabolome Technologies, Inc., Tsuruoka 997-0052, Japan. ; 1] Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA [2] Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [3] The David H. Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA [4] Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA [5] Broad Institute of Harvard and MIT, Seven Cambridge Center, Cambridge, Massachusetts 02142, USA [6] Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA. ; Human Metabolome Technologies America, Inc., Boston, Massachusetts 02134, USA. ; 1] Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA [2] Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA. ; 1] Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA [3] Department of Pathology, Boston Children's Hospital, Boston, Massachusetts 02115, USA. ; Department of Pathology, NYU Langone Medical Center and Medical School, New York, New York 10016, USA. ; 1] The David H. Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA [2] Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA [3] Broad Institute of Harvard and MIT, Seven Cambridge Center, Cambridge, Massachusetts 02142, USA [4] Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25855294" target="_blank"〉PubMed〈/a〉
    Keywords: Acetone/analogs & derivatives/metabolism/toxicity ; Animals ; Brain Neoplasms/blood supply/enzymology/*metabolism/*pathology ; Cell Hypoxia ; Cell Line, Tumor ; Cell Survival ; Female ; Glioblastoma/blood supply/enzymology/*metabolism/*pathology ; Glycine/*metabolism ; Glycine Dehydrogenase (Decarboxylating)/antagonists & inhibitors/metabolism ; Glycine Hydroxymethyltransferase/*metabolism ; Humans ; Ischemia/enzymology/*metabolism/pathology ; Mice ; Necrosis ; Oxygen Consumption ; Pyruvaldehyde/metabolism/toxicity ; Pyruvate Kinase/metabolism ; Tumor Microenvironment ; Xenograft Model Antitumor Assays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-10-10
    Description: Leucine is a proteogenic amino acid that also regulates many aspects of mammalian physiology, in large part by activating the mTOR complex 1 (mTORC1) protein kinase, a master growth controller. Amino acids signal to mTORC1 through the Rag guanosine triphosphatases (GTPases). Several factors regulate the Rags, including GATOR1, aGTPase-activating protein; GATOR2, a positive regulator of unknown function; and Sestrin2, a GATOR2-interacting protein that inhibits mTORC1 signaling. We find that leucine, but not arginine, disrupts the Sestrin2-GATOR2 interaction by binding to Sestrin2 with a dissociation constant of 20 micromolar, which is the leucine concentration that half-maximally activates mTORC1. The leucine-binding capacity of Sestrin2 is required for leucine to activate mTORC1 in cells. These results indicate that Sestrin2 is a leucine sensor for the mTORC1 pathway.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4698017/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4698017/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wolfson, Rachel L -- Chantranupong, Lynne -- Saxton, Robert A -- Shen, Kuang -- Scaria, Sonia M -- Cantor, Jason R -- Sabatini, David M -- AI47389/AI/NIAID NIH HHS/ -- F30 CA189333/CA/NCI NIH HHS/ -- F31 CA180271/CA/NCI NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R37 AI047389/AI/NIAID NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Jan 1;351(6268):43-8. doi: 10.1126/science.aab2674. Epub 2015 Oct 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA. ; Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA. sabatini@wi.mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26449471" target="_blank"〉PubMed〈/a〉
    Keywords: GTPase-Activating Proteins/*metabolism ; HEK293 Cells ; Humans ; Leucine/*metabolism ; Metabolic Networks and Pathways ; Multiprotein Complexes/*metabolism ; Nuclear Proteins/chemistry/genetics/*metabolism ; Protein Binding ; Proteins/chemistry/*metabolism ; Signal Transduction ; TOR Serine-Threonine Kinases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-01-05
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-01-26
    Description: A number of heterologous enzymes have been investigated for cancer treatment and other therapeutic applications; however, immunogenicity issues have limited their clinical utility. Here, a new approach has been created for heterologous enzyme deimmunization whereby combinatorial saturation mutagenesis is coupled with a screening strategy that capitalizes on the evolutionary biology concept of neutral drift, and combined with iterative computational prediction of T-cell epitopes to achieve extensive reengineering of a protein sequence for reduced MHC-II binding propensity without affecting catalytic and pharmacological properties. Escherichia coli L-asparaginase II (EcAII), the only nonhuman enzyme approved for repeated administration, is critical in treatment of childhood acute lymphoblastic leukemia (ALL), but elicits adverse antibody responses in a significant fraction of patients. The neutral drift screening of combinatorial saturation mutagenesis libraries at a total of 12 positions was used to isolate an EcAII variant containing eight amino acid substitutions within computationally predicted T-cell epitopes—of which four were nonconservative—while still exhibiting kcat/KM = 106 M-1 s-1 for L-Asn hydrolysis. Further, immunization of HLA-transgenic mice expressing the ALL-associated DRB1*0401 allele with the engineered variant resulted in significantly reduced T-cell responses and a 10-fold reduction in anti-EcAII IgG titers relative to the existing therapeutic. This significant reduction in the immunogenicity of EcAII may be clinically relevant for ALL treatment and illustrates the potential of employing neutral drift screens to achieve large jumps in sequence space as may be required for the deimmunization of heterologous proteins.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...