ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-06-15
    Description: Mutations in PKD2 are responsible for approximately 15% of the autosomal dominant polycystic kidney disease cases. This gene encodes polycystin-2, a calcium-permeable cation channel whose C-terminal intracytosolic tail (PC2t) plays an important role in its interaction with a number of different proteins. In the present study, we have comprehensively evaluated the macromolecular assembly of PC2t homooligomer using a series of biophysical and biochemical analyses. Our studies, based on a new delimitation of PC2t, have revealed that it is capable of assembling as a homotetramer independently of any other portion of the molecule. Our data support this tetrameric arrangement in the presence and absence of calcium. Molecular dynamics simulations performed with a modified all-atoms structure-based model supported the PC2t tetrameric assembly, as well as how different populations are disposed in solution. The simulations demonstrated, indeed, that the best-scored structures are the ones compatible with a fourfold oligomeric state. These findings clarify the structural properties of PC2t domain and strongly support a homotetramer assembly of PC2.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-10-06
    Description: Marcus theory has explained how thermal nuclear motions modulate the energy gap between donor and acceptor sites in protein electron transfer reactions. Thermal motions, however, may also modulate electron tunneling between these reactions. Here we identify a new mechanism of nuclear dynamics amplification that plays a central role when interference among the dominant tunneling pathway tubes is destructive. In these cases, tunneling takes place in protein conformations far from equilibrium that minimize destructive interference. As an example, we demonstrate how this dynamical amplification mechanism affects certain reaction rates in the photosynthetic reaction center and therefore may be critical for biological function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Balabin, I A -- Onuchic, J N -- GM48043/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Oct 6;290(5489):114-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, University of California at San Diego, La Jolla, CA 92093-0319, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11021791" target="_blank"〉PubMed〈/a〉
    Keywords: Chemistry, Physical ; Computer Simulation ; Crystallography, X-Ray ; Darkness ; *Electrons ; Hydrogen Bonding ; Light ; Pheophytins/chemistry/metabolism ; Photosynthetic Reaction Center Complex Proteins/*chemistry/*metabolism ; Physicochemical Phenomena ; Protein Conformation ; Quinones/chemistry/metabolism ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2001-07-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brooks, C L 3rd -- Onuchic, J N -- Wales, D J -- New York, N.Y. -- Science. 2001 Jul 27;293(5530):612-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. brooks@scripps.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11474087" target="_blank"〉PubMed〈/a〉
    Keywords: Chemistry, Physical ; Computer Simulation ; Entropy ; Glass/*chemistry ; Physicochemical Phenomena ; *Protein Folding ; Proteins/chemistry ; *Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-12-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beratan, D N -- Onuchic, J N -- Winkler, J R -- Gray, H B -- New York, N.Y. -- Science. 1992 Dec 11;258(5089):1740-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Pittsburgh, PA 15260.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1334572" target="_blank"〉PubMed〈/a〉
    Keywords: Cytochrome c Group/*chemistry/metabolism ; Cytochrome-c Peroxidase/*chemistry/metabolism ; *Electron Transport ; Models, Molecular ; Photosynthesis ; Protein Conformation ; Proteins/*chemistry ; Saccharomyces cerevisiae/metabolism ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1991-05-31
    Description: The rate of long-distance electron transfer in proteins rapidly decreases with distance, which is indicative of an electron tunneling process. Calculations predict that the distance dependence of electron transfer in native proteins is controlled by the protein's structural motif. The helix and sheet content of a protein and the tertiary arrangement of these secondary structural units define the distance dependence of electronic coupling in that protein. The calculations use a tunneling pathway model applied previously with success to ruthenated proteins. The analysis ranks the average distance decay constant for electronic coupling in electron transfer proteins and identifies the amino acids that are coupled to the charge localization site more strongly or weakly than average for their distance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beratan, D N -- Betts, J N -- Onuchic, J N -- New York, N.Y. -- Science. 1991 May 31;252(5010):1285-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Beratan, Jet Propulsion Laboratory, California Institute of Technology, Pasadena 91109.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1656523" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/chemistry ; Azurin/chemistry/metabolism ; *Bacterial Proteins ; Chemistry, Physical ; Cytochrome c Group/chemistry/metabolism ; Cytochromes b5/chemistry/metabolism ; *Electron Transport ; Iron-Sulfur Proteins/chemistry/metabolism ; Mathematics ; Models, Molecular ; Myoglobin/chemistry/metabolism ; *Photosynthetic Reaction Center Complex Proteins ; Physicochemical Phenomena ; Protein Conformation ; Proteins/*chemistry/metabolism ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2003-09-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sung, Nancy S -- Gordon, Jeffrey I -- Rose, George D -- Getzoff, Elizabeth D -- Kron, Stephen J -- Mumford, David -- Onuchic, Jose N -- Scherer, Norbert F -- Sumners, DeWitt L -- Kopell, Nancy J -- New York, N.Y. -- Science. 2003 Sep 12;301(5639):1485.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Burroughs Wellcome Fund, Research Triangle Park, NC 27709, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12970550" target="_blank"〉PubMed〈/a〉
    Keywords: Biological Science Disciplines/*education ; Curriculum ; *Education, Graduate ; Faculty ; Mathematics ; Mentors ; Natural Science Disciplines/education ; Research Support as Topic ; Science/*education ; Training Support ; Universities
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-05-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wolynes, P G -- Onuchic, J N -- Thirumalai, D -- New York, N.Y. -- Science. 1995 May 19;268(5213):960-1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17774212" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-03-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wolynes, P G -- Onuchic, J N -- Thirumalai, D -- New York, N.Y. -- Science. 1995 Mar 17;267(5204):1619-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Chemical Sciences, University of Illinois, Urbana 61801.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7886447" target="_blank"〉PubMed〈/a〉
    Keywords: Computer Simulation ; Models, Chemical ; Models, Molecular ; Protein Conformation ; *Protein Folding ; Protein Structure, Secondary ; Temperature ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-12-03
    Description: The elongation cycle of protein synthesis involves the delivery of aminoacyl-transfer RNAs to the aminoacyl-tRNA-binding site (A site) of the ribosome, followed by peptide-bond formation and translocation of the tRNAs through the ribosome to reopen the A site. The translocation reaction is catalysed by elongation factor G (EF-G) in a GTP-dependent manner. Despite the availability of structures of various EF-G-ribosome complexes, the precise mechanism by which tRNAs move through the ribosome still remains unclear. Here we use multiparticle cryoelectron microscopy analysis to resolve two previously unseen subpopulations within Thermus thermophilus EF-G-ribosome complexes at subnanometre resolution, one of them with a partly translocated tRNA. Comparison of these substates reveals that translocation of tRNA on the 30S subunit parallels the swivelling of the 30S head and is coupled to unratcheting of the 30S body. Because the tRNA maintains contact with the peptidyl-tRNA-binding site (P site) on the 30S head and simultaneously establishes interaction with the exit site (E site) on the 30S platform, a novel intra-subunit 'pe/E' hybrid state is formed. This state is stabilized by domain IV of EF-G, which interacts with the swivelled 30S-head conformation. These findings provide direct structural and mechanistic insight into the 'missing link' in terms of tRNA intermediates involved in the universally conserved translocation process.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272701/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272701/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ratje, Andreas H -- Loerke, Justus -- Mikolajka, Aleksandra -- Brunner, Matthias -- Hildebrand, Peter W -- Starosta, Agata L -- Donhofer, Alexandra -- Connell, Sean R -- Fucini, Paola -- Mielke, Thorsten -- Whitford, Paul C -- Onuchic, Jose N -- Yu, Yanan -- Sanbonmatsu, Karissa Y -- Hartmann, Roland K -- Penczek, Pawel A -- Wilson, Daniel N -- Spahn, Christian M T -- GM 60635/GM/NIGMS NIH HHS/ -- R01 GM060635/GM/NIGMS NIH HHS/ -- R01 GM060635-13/GM/NIGMS NIH HHS/ -- R01 GM072686/GM/NIGMS NIH HHS/ -- R01-GM072686/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Dec 2;468(7324):713-6. doi: 10.1038/nature09547.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Medizinische Physik und Biophysik, Charite - Universitatsmedizin Berlin, Ziegelstrasse 5-9, 10117-Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21124459" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Guanosine Diphosphate/chemistry/metabolism ; Models, Molecular ; *Movement ; Peptide Elongation Factor G/chemistry/metabolism ; Protein Biosynthesis ; Protein Conformation ; Protein Subunits/chemistry/metabolism ; RNA, Transfer/chemistry/*metabolism/ultrastructure ; Ribosome Subunits, Small, Bacterial/*chemistry/*metabolism/ultrastructure ; Thermus thermophilus/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1988-08-12
    Description: An electronic shift-register memory at the molecular level is described. The memory elements are based on a chain of electron-transfer molecules and the information is shifted by photoinduced electron-transfer reactions. This device integrates designed electronic molecules onto a very large scale integrated (silicon microelectronic) substrate, providing an example of a "molecular electronic device" that could actually be made. The design requirements for such a device and possible synthetic strategies are discussed. Devices along these lines should have lower energy usage and enhanced storage density.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hopfield, J J -- Onuchic, J N -- Beratan, D N -- New York, N.Y. -- Science. 1988 Aug 12;241(4867):817-20.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17829175" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...