ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-07-31
    Description: Adenylyl cyclase (AC) converts adenosine triphosphate (ATP) to cyclic adenosine monophosphate, a ubiquitous second messenger that regulates many cellular functions. Recent structural studies have revealed much about the structure and function of mammalian AC but have not fully defined its active site or catalytic mechanism. Four crystal structures were determined of the catalytic domains of AC in complex with two different ATP analogs and various divalent metal ions. These structures provide a model for the enzyme-substrate complex and conclusively demonstrate that two metal ions bind in the active site. The similarity of the active site of AC to those of DNA polymerases suggests that the enzymes catalyze phosphoryl transfer by the same two-metal-ion mechanism and likely have evolved from a common ancestor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tesmer, J J -- Sunahara, R K -- Johnson, R A -- Gosselin, G -- Gilman, A G -- Sprang, S R -- DK38828/DK/NIDDK NIH HHS/ -- DK46371/DK/NIDDK NIH HHS/ -- GM34497/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 30;285(5428):756-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235-9050, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10427002" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Adenylyl Cyclase Inhibitors ; Adenylyl Cyclases/chemistry/genetics/*metabolism ; Animals ; Aspartic Acid/metabolism ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; Deoxyadenine Nucleotides/metabolism/pharmacology ; Dideoxynucleotides ; Dimerization ; Enzyme Inhibitors/metabolism ; Hydrogen Bonding ; Ligands ; Magnesium/*metabolism ; Manganese/*metabolism ; Models, Molecular ; Mutation ; Protein Conformation ; Protein Folding ; Rats ; Thionucleotides/metabolism/pharmacology ; Zinc/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-01-07
    Description: The crystal structure of a soluble, catalytically active form of adenylyl cyclase in a complex with its stimulatory heterotrimeric G protein alpha subunit (Gsalpha) and forskolin was determined to a resolution of 2.3 angstroms. When P-site inhibitors were soaked into native crystals of the complex, the active site of adenylyl cyclase was located and structural elements important for substrate recognition and catalysis were identified. On the basis of these and other structures, a molecular mechanism is proposed for the activation of adenylyl cyclase by Gsalpha.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tesmer, J J -- Sunahara, R K -- Gilman, A G -- Sprang, S R -- DK38828/DK/NIDDK NIH HHS/ -- DK46371/DK/NIDDK NIH HHS/ -- GM34497/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Dec 12;278(5345):1907-16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75235-9050, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9417641" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Adenylyl Cyclase Inhibitors ; Adenylyl Cyclases/*chemistry/metabolism ; Amino Acid Sequence ; Binding Sites ; Catalysis ; Colforsin/metabolism ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Enzyme Activation ; GTP-Binding Protein alpha Subunits, Gs/*chemistry/metabolism ; Guanosine 5'-O-(3-Thiotriphosphate)/*chemistry/metabolism ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-01-07
    Description: The crystal structure of Gsalpha, the heterotrimeric G protein alpha subunit that stimulates adenylyl cyclase, was determined at 2.5 A in a complex with guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS). Gsalpha is the prototypic member of a family of GTP-binding proteins that regulate the activities of effectors in a hormone-dependent manner. Comparison of the structure of Gsalpha.GTPgammaS with that of Gialpha.GTPgammaS suggests that their effector specificity is primarily dictated by the shape of the binding surface formed by the switch II helix and the alpha3-beta5 loop, despite the high sequence homology of these elements. In contrast, sequence divergence explains the inability of regulators of G protein signaling to stimulate the GTPase activity of Gsalpha. The betagamma binding surface of Gsalpha is largely conserved in sequence and structure to that of Gialpha, whereas differences in the surface formed by the carboxyl-terminal helix and the alpha4-beta6 loop may mediate receptor specificity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sunahara, R K -- Tesmer, J J -- Gilman, A G -- Sprang, S R -- DK46371/DK/NIDDK NIH HHS/ -- GM34497/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Dec 12;278(5345):1943-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235-9041, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9395396" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclases/chemistry/*metabolism ; Amino Acid Sequence ; Binding Sites ; Conserved Sequence ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Enzyme Activation ; GTP Phosphohydrolases/metabolism ; GTP-Binding Protein alpha Subunits, Gi-Go/chemistry/metabolism ; GTP-Binding Protein alpha Subunits, Gs/*chemistry/metabolism ; Guanosine 5'-O-(3-Thiotriphosphate)/*chemistry/metabolism ; Guanosine Triphosphate/metabolism ; Hydrolysis ; Magnesium/metabolism ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; Protein Structure, Secondary ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2005-12-13
    Description: G protein-coupled receptor kinase 2 (GRK2) plays a key role in the desensitization of G protein-coupled receptor signaling by phosphorylating activated heptahelical receptors and by sequestering heterotrimeric G proteins. We report the atomic structure of GRK2 in complex with Galphaq and Gbetagamma, in which the activated Galpha subunit of Gq is fully dissociated from Gbetagamma and dramatically reoriented from its position in the inactive Galphabetagamma heterotrimer. Galphaq forms an effector-like interaction with the GRK2 regulator of G protein signaling (RGS) homology domain that is distinct from and does not overlap with that used to bind RGS proteins such as RGS4.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tesmer, Valerie M -- Kawano, Takeharu -- Shankaranarayanan, Aruna -- Kozasa, Tohru -- Tesmer, John J G -- AG006093/AG/NIA NIH HHS/ -- GM61454/GM/NIGMS NIH HHS/ -- HL071818/HL/NHLBI NIH HHS/ -- NS41441/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2005 Dec 9;310(5754):1686-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16339447" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Cattle ; Crystallography, X-Ray ; GTP-Binding Protein alpha Subunits, Gq-G11/*chemistry/metabolism ; GTP-Binding Protein beta Subunits/*chemistry/metabolism ; GTP-Binding Protein gamma Subunits/*chemistry/metabolism ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; RGS Proteins/metabolism ; Signal Transduction ; beta-Adrenergic Receptor Kinases/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2003-05-24
    Description: The phosphorylation of heptahelical receptors by heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor kinases (GRKs) is a universal regulatory mechanism that leads to desensitization of G protein signaling and to the activation of alternative signaling pathways. We determined the crystallographic structure of bovine GRK2 in complex with G protein beta1gamma2 subunits. Our results show how the three domains of GRK2-the RGS (regulator of G protein signaling) homology, protein kinase, and pleckstrin homology domains-integrate their respective activities and recruit the enzyme to the cell membrane in an orientation that not only facilitates receptor phosphorylation, but also allows for the simultaneous inhibition of signaling by Galpha and Gbetagamma subunits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lodowski, David T -- Pitcher, Julie A -- Capel, W Darrell -- Lefkowitz, Robert J -- Tesmer, John J G -- HL16037/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2003 May 23;300(5623):1256-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12764189" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Cattle ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Cyclic AMP-Dependent Protein Kinases/*chemistry/*metabolism ; *GTP-Binding Protein beta Subunits ; *GTP-Binding Protein gamma Subunits ; Heterotrimeric GTP-Binding Proteins/*chemistry/*metabolism ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; Phosphorylation ; Protein Binding ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Signal Transduction ; beta-Adrenergic Receptor Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-04-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tesmer, John Joseph Grubb -- New York, N.Y. -- Science. 2006 Apr 21;312(5772):377-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA. tesmerjj@umich.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16627730" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Site ; Animals ; Binding Sites ; Computer Simulation ; Drug Design ; Drug Evaluation, Preclinical/*methods ; GTP-Binding Protein alpha Subunits/metabolism ; GTP-Binding Protein beta Subunits/chemistry/*metabolism ; GTP-Binding Protein gamma Subunits/chemistry/*metabolism ; Models, Molecular ; Peptide Library ; Peptides/*metabolism ; Protein Binding ; *Signal Transduction ; Software ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-12-22
    Description: The guanine nucleotide exchange factor p63RhoGEF is an effector of the heterotrimeric guanine nucleotide-binding protein (G protein) Galphaq and thereby links Galphaq-coupled receptors (GPCRs) to the activation of the small-molecular-weight G protein RhoA. We determined the crystal structure of the Galphaq-p63RhoGEF-RhoA complex, detailing the interactions of Galphaq with the Dbl and pleckstrin homology (DH and PH) domains of p63RhoGEF. These interactions involve the effector-binding site and the C-terminal region of Galphaq and appear to relieve autoinhibition of the catalytic DH domain by the PH domain. Trio, Duet, and p63RhoGEF are shown to constitute a family of Galphaq effectors that appear to activate RhoA both in vitro and in intact cells. We propose that this structure represents the crux of an ancient signal transduction pathway that is expected to be important in an array of physiological processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lutz, Susanne -- Shankaranarayanan, Aruna -- Coco, Cassandra -- Ridilla, Marc -- Nance, Mark R -- Vettel, Christiane -- Baltus, Doris -- Evelyn, Chris R -- Neubig, Richard R -- Wieland, Thomas -- Tesmer, John J G -- HL071818/HL/NHLBI NIH HHS/ -- HL086865/HL/NHLBI NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Dec 21;318(5858):1923-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Maybachstrasse 14, D-68169 Mannheim, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18096806" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Cell Line ; Crystallography, X-Ray ; GTP-Binding Protein alpha Subunits, Gq-G11/*chemistry/metabolism ; Guanine Nucleotide Exchange Factors/*chemistry/metabolism ; Humans ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rho Guanine Nucleotide Exchange Factors ; Signal Transduction ; rhoA GTP-Binding Protein/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 2019
    Description: 〈p〉PIP〈sub〉3〈/sub〉-dependent Rac exchanger 1 (P-Rex1) is activated downstream of G protein–coupled receptors to promote neutrophil migration and metastasis. The structure of more than half of the enzyme and its regulatory G protein binding site are unknown. Our 3.2 Å cryo-EM structure of the P-Rex1–Gβ complex reveals that the carboxyl-terminal half of P-Rex1 adopts a complex fold most similar to those of 〈i〉Legionella〈/i〉 phosphoinositide phosphatases. Although catalytically inert, the domain coalesces with a DEP domain and two PDZ domains to form an extensive docking site for Gβ. Hydrogen-deuterium exchange mass spectrometry suggests that Gβ binding induces allosteric changes in P-Rex1, but functional assays indicate that membrane localization is also required for full activation. Thus, a multidomain assembly is key to the regulation of P-Rex1 by Gβ and the formation of a membrane-localized scaffold optimized for recruitment of other signaling proteins such as PKA and PTEN.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-09-14
    Description: Few experimental techniques can assess the orientation of peripheral membrane proteins in their native environment. Sum Frequency Generation (SFG) vibrational spectroscopy was applied to study the formation of the complex between G protein-coupled receptor (GPCR) kinase 2 (GRK2) and heterotrimeric G protein β1γ2 subunits (Gβγ) at a lipid bilayer, without any exogenous labels. The most likely membrane orientation of the GRK2-Gβγ complex differs from that predicted from the known protein crystal structure, and positions the predicted receptor docking site of GRK2 such that it would more optimally interact with GPCRs. Gβγ also appears to change its orientation after binding to GRK2. The developed methodology is widely applicable for the study of other membrane proteins in situ.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...