ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Heating and current drive with ICRF is one of the major missions of TPX and is crucial to its success. In contrast to the integrated nature of core diagnostic programs, diagnostics that measure ICRF propagation and edge interactions are often assigned lower priority, have not been included in the base diagnositics set, or were included as upgrades. This can result in an incomplete and unoptimized set of measurements. Thus it is important that an integrated set of diagnostics (engineered along with the antenna design), capable of fully diagnosing the interaction, propagation, and absorption of the ICRF be available for TPX. The parameters of interest include: coupling of the ICRF antenna to the plasma, launched spectrum, wave propagation, edge plasma interactions, electron heating, and current drive, and fast ion power deposition and losses. The diagnostic set should be designed so it can be upgraded for control of loading and spectrum by providing feedback information for adjusting phase, power level, fuel gas injection, and plasma position. The proposed set focuses on wave propagation, launched spectrum, absorption, and measuring and comparing the plasma edge properties in the near vicinity of the antenna with that measured at a large toroidal distance from them; thus many would be installed as toroidally separated indentical sets. In addition to the planned core diagnostic set, the ICRF specific diagnostics proposed for TPX include: edge density reflectometers, RF fluctuation reflectometers, fixed and moveable Langmuir probes, visible and IR cameras with spectroscopic line filters, rf magnetic loop probes, local ion energy analyzer, direct ion loss detectors, charge exchange analyzers, fast response ECE, and edge temperature ECE. The anticipated approach is one in which individual diagnostics could be provided by industry, universities, or laboratories but overall coordination, driven by specific ICRF issues, would be required. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The feasibility of electron density profile measurements using a heavy ion beam probe in high-temperature plasmas has been demonstrated earlier [J. Schwelberger et al., Bull. Am. Phys. Soc. 36, 2292 (1991); Yu. N. Dnestrovskij et al., Sov. J. Plasma Phys. 12, 130 (1986)]. Two algorithms were developed to obtain density profiles from the heavy ion beam probe on the Advanced Toroidal Facility (ATF). A comparison of the algorithms is presented with a detailed study of the errors involved in the measurements. The errors can be due to uncertainties in cross sections, electron temperature, the line average density measurement, and the ion trajectory calculations. The heavy ion beam probe density profile measurement is not very susceptible to errors as long as the electron temperature stays above 30 eV. If the electron temperature is below this value, a small uncertainty in the temperature introduces a large error in the density. Also, important for a good density profile measurement is the calculation of the correct ion trajectories. Examples of density profiles are shown for ECH plasmas on ATF together with a detailed error analysis. The heavy ion beam probe results are in good agreement with multichannel far-infrared laser interferometry and Thomson scattering results.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Recent measurements of the two-dimensional (2-D) spatial profiles of divertor plasma density, temperature, and emissivity in the DIII-D tokamak [J. Luxon et al., in Proceedings of the 11th International Conference on Plasma Physics and Controlled Nuclear Fusion (International Atomic Energy Agency, Vienna, 1987), p. 159] under highly radiating conditions are presented. Data are obtained using a divertor Thomson scattering system and other diagnostics optimized for measuring the high electron densities and low temperatures in these detached divertor plasmas (ne≤1021 m−3, 0.5 eV≤Te). D2 gas injection in the divertor increases the plasma radiation and lowers Te to less than 2 eV in most of the divertor volume. Modeling shows that this temperature is low enough to allow ion–neutral collisions, charge exchange, and volume recombination to play significant roles in reducing the plasma pressure along the magnetic separatrix by a factor of 3–5, consistent with the measurements. Absolutely calibrated vacuum ultraviolet spectroscopy and 2-D images of impurity emission show that carbon radiation near the X-point, and deuterium radiation near the target plates contribute to the reduction in Te. Uniformity of radiated power (Prad) (within a factor of 2) along the outer divertor leg, with peak heat flux on the divertor target reduced fourfold, was obtained. A comparison with 2-D fluid simulations shows good agreement when physical sputtering and an ad hoc chemical sputtering source (0.5%) from the private flux region surface are used. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 6 (1999), S. 1837-1842 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Parallel flow velocities of carbon ions in the DIII-D divertor [J. Luxon et al., Plasma Physics Controlled Nuclear Fusion Research, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159; S. L. Allen et al., Controlled Fusion and Plasma Physics, 1987 (Proc. 24th European Conf. Berchtesgaden, 1997), Vol. 21 A, Part III, p. 1129] have been studied under various operating conditions: L-mode (low-confinement mode), H-mode (high-confinement mode) with low-frequency ELMs (edge-localized modes), and H-mode with high-frequency ELMs. Both normal and reversed flows (toward the target plate and away from the target plate, respectively) are observed under all conditions, with the reversed speeds being as much as a factor of four greater than normal speeds. Magnitudes are approximately the same for L-mode and H-mode operation with high-frequency ELMs. In H-mode conditions with low-frequency ELMs, normal velocities are frequently observed to decline while reversed velocities increase in comparison to the other two conditions. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 6 (1999), S. 541-549 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Flow velocities of C+, C2+, B+, and D+ parallel to the magnetic field in the DIII-D [J. Luxon, P. Anderson, F. Batty et al., Plasma Physics Controlled Nuclear Fusion Research, Proceedings of the 11th International Conference, Tokyo, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] divertor have been measured from Doppler shifts of spectral lines. In general, both normal flows (toward the target plate) and reversed flows (away from the target plate) are observed in the outer scrape-off layer with the reversed flows occurring near the separatrix. Following the transition from attached to partially detached conditions, normal flow velocities generally speed up while in some regions reversed flows are observed to slow down. In high density plasmas, deuteron velocities are reflected in Balmer line emission which originates mainly from atoms which have thermalized by charge exchange or which have been formed by recombination. Low-temperature areas of nearly stagnated deuteron flow have been observed. In these regions recombination should be efficient for neutralizing the divertor plasma. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 4 (1997), S. 355-368 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Radiative losses along a fixed view into the divertor chamber of the DIII-D tokamak [Plasma Physics Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol I, p. 159] have been characterized for attached and partially detached discharges by analyzing line-integrated vacuum ultraviolet (VUV) signals. Essentially all the emission can be ascribed to carbon and deuterium. Because the majority of the most intense lines, which lie at wavelengths above 1100 Å, are not accessible to the present instrumentation, extensive use has been made of collisional-radiative (CR) calculations for level populations of the important ions in order to relate the total radiated power to shorter wavelength transitions. In beam-heated plasmas, the fraction of radiation detected from carbon along the VUV spectrometer view is usually between 50% and 80% of the total. Carbon densities are estimated from a simplified approach to modelling the emission using a one-dimensional transport code. For partially detached plasmas the concentrations range from 2%–6% of the electron density; but in attached plasmas it appears that carbon may supply most of the electrons in the divertor region just below the X point. Ion temperatures are measured from Doppler broadening of spectral lines by fitting measured profiles to theoretical lineshapes, which account precisely for atomic sublevel splitting caused by the Zeeman/Paschen-Back effect in the tokamak magnetic field. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Measurements of edge plasma turbulence properties have been carried out in the Advanced Toroidal Facility (ATF) [Fusion Technol. 10, 179 (1986)] during experiments in which hydrogen and neon gas puffing are used to vary the edge temperature in the range 5〈Te〈40 eV in a controlled way. In the temperature range where the rate coefficients for ionization processes are strongly temperature dependent (5〈Te〈15 eV) the electron temperature plays an important role in determining the level of edge turbulence and the value of the self-generated radial electric fields. These results provide evidence of edge turbulence and flows modified by the presence of neutral particles.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 3663-3680 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The results of detailed comparisons between experimental measurements of the scrape-off layer and divertor plasmas and simulations using the UEDGE code for a DIII-D discharge [J. Luxon et al., Proceedings of the 11th International Conference on Plasma Physics and Controlled Nuclear Fusion (International Atomic Energy Agency, Vienna, 1986), Vol. I, p. 159] are reported. The simulations focus on understanding the flow of both fuel and impurity particles throughout the edge and scrape-off layer (SOL) plasma. The core impurity content and the core hydrogen ionization rate can be explained by sputtering and recycling in the divertor region alone. The model reproduces most of the detailed experimental measurements. The simulations include the effect of intrinsic impurities, assumed to be carbon originating from sputtering of the plasma facing surfaces. The simulations accurately reproduce the total radiated power, although the spatial profile of radiation is somewhat narrower in the simulation. The measured carbon density on closed field lines is reproduced well with the simulation. Comparison of carbon emission lines indicates the total carbon sputtering yield is a factor of 2 to 4 less than expected, although the total radiated power and core carbon content are insensitive to the sputtering yield. The agreement between simulation and experiment permits more meaningful interpretation of the experimental measurements. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 4 (1997), S. 2989-2996 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Thomson scattering measurements performed in the divertor of the DIII-D tokamak [Plasma Physics Controlled Nuclear Fusion Research, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] during detached operation show that the electron temperatures are typically between 0.8 and 2.0 eV throughout a region which may extend several centimeters above the target plate. At such low temperatures the excitation of recycling deuterium atoms or impurities should be weak. Nevertheless, significant radiation is frequently detected in these locations. It has been suggested that recombination processes, which become important only below about 1.5 eV for deuterium, are responsible for the observed emission. This hypothesis has been investigated by comparing ratios of deuterium lines from attached and detached plasmas with theoretical ratios expected for ionizing or recombining conditions. The analysis of several discharges indicates that the mechanism for production of the emission changes from being collisional excitation of atomic deuterium to a mixture of collisional-radiative recombination and collisional excitation as plasmas evolve from attached to detached states. Localization of D-α emission to low-temperature regions using tangentially viewing camera data together with Thomson scattering results and measurements of deuterium atom temperatures are consistent with these conclusions. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Application of Ion Bernstein Wave Heating (IBWH) into the Princeton Beta Experiment-Modification (PBX-M) [Phys. Fluids B 2, 1271 (1990)] tokamak stabilizes sawtooth oscillations and generates peaked density profiles. A transport barrier, spatially correlated with the IBWH power deposition profile, is observed in the core of IBWH-assisted neutral beam injection (NBI) discharges. A precursor to the fully developed barrier is seen in the soft x-ray data during edge localized mode (ELM) activity. Sustained IBWH operation is conducive to a regime where the barrier supports large ∇ne, ∇Te, ∇νφ, and ∇Ti, delimiting the confinement zone. This regime is reminiscent of the H(high) mode, but with a confinement zone moved inward. The core region has better than H-mode confinement while the peripheral region is L(low)-mode-like. The peaked profile enhances NBI core deposition and increases nuclear reactivity. An increase in central Ti results from χi reduction (compared to the H mode) and better beam penetration. Bootstrap current fractions of up to 0.32–0.35 locally and 0.28 overall were obtained when an additional NBI burst is applied to this plasma. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...