ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-31
    Description: The applicability of H infinity control theory to the problems of large space structures (LSS) control was investigated. A complete evaluation to any technique as a candidate for large space structure control involves analytical evaluation, algorithmic evaluation, evaluation via simulation studies, and experimental evaluation. The results of analytical and algorithmic evaluations are documented. The analytical evaluation involves the determination of the appropriateness of the underlying assumptions inherent in the H infinity theory, the determination of the capability of the H infinity theory to achieve the design goals likely to be imposed on an LSS control design, and the identification of any LSS specific simplifications or complications of the theory. The resuls of the analytical evaluation are presented in the form of a tutorial on the subject of H infinity control theory with the LSS control designer in mind. The algorthmic evaluation of H infinity for LSS control pertains to the identification of general, high level algorithms for effecting the application of H infinity to LSS control problems, the identification of specific, numerically reliable algorithms necessary for a computer implementation of the general algorithms, the recommendation of a flexible software system for implementing the H infinity design steps, and ultimately the actual development of the necessary computer codes. Finally, the state of the art in H infinity applications is summarized with a brief outline of the most promising areas of current research.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Alabama Univ., Research Reports: 1988 NASA(ASEE Summer Faculty Fellowship Program; 26 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: In recent years the employment of active control techniques for improving the performance of systems involving highly flexible structures has become a topic of considerable research interest. Most of these systems are quite complicated, using multiple actuators and sensors, and possessing high order models. The majority of analytical controller synthesis procedures capable of handling multivariable systems in a systematic way require considerable insight into the underlying mathematical theory to achieve a successful design. This insight is needed in selecting the proper weighting matrices or weighting functions to cast what is naturally a multiple constraint satisfaction problem into an unconstrained optimization problem. Although designers possessing considerable experience with these techniques have a feel for the proper choice of weights, others may spend a significant amount of time attempting to find an acceptable solution. Another disadvantage of such procedures is that the resulting controller has an order greater than or equal to that of the model used for the design. Of course, the order of these controllers can often be reduced, but again this requires a good understanding of the theory involved.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, The Fifth NASA(DOD Controls-Structures Interaction Technology Conference, Part 1; p 65-78
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: The dynamics and control of flexible aerospace structures exercises many of the engineering disciplines. In recent years there has been considerable research in the developing and tailoring of control system design techniques for these structures. This problem involves designing a control system for a multi-input, multi-output (MIMO) system that satisfies various performance criteria, such as vibration suppression, disturbance and noise rejection, attitude control and slewing control. Considerable progress has been made and demonstrated in control system design techniques for these structures. The key to designing control systems for these structures that meet stringent performance requirements is an accurate model. It has become apparent that theoretically and finite-element generated models do not provide the needed accuracy; almost all successful demonstrations of control system design techniques have involved using test results for fine-tuning a model or for extracting a model using system ID techniques. This paper describes past and ongoing efforts at Ohio University and NASA MSFC to design controllers using 'data models.' The basic philosophy of this approach is to start with a stabilizing controller and frequency response data that describes the plant; then, iteratively vary the free parameters of the controller so that performance measures become closer to satisfying design specifications. The frequency response data can be either experimentally derived or analytically derived. One 'design-with-data' algorithm presented in this paper is called the Compensator Improvement Program (CIP). The current CIP designs controllers for MIMO systems so that classical gain, phase, and attenuation margins are achieved. The center-piece of the CIP algorithm is the constraint improvement technique which is used to calculate a parameter change vector that guarantees an improvement in all unsatisfied, feasible performance metrics from iteration to iteration. The paper also presents a recently demonstrated CIP-type algorithm, called the Model and Data Oriented Computer-Aided Design System (MADCADS), developed for achieving H(sub infinity) type design specifications using data models. Control system design for the NASA/MSFC Single Structure Control Facility are demonstrated for both CIP and MADCADS. Advantages of design-with-data algorithms over techniques that require analytical plant models are also presented.
    Keywords: AIRCRAFT STABILITY AND CONTROL
    Type: JPL, Proceedings of the Fifth NASA(NSF)DOD Workshop on Aerospace Computational Control; p 463-477
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: A new algorithm for calculating H (sup infinity) optimal controllers is investigated. The algorithm is significantly simpler than existing approaches and yields much simpler controllers. The design equations are first presented. Special system transformations required to apply the algorithm are then presented. The use of the algorithm with sampled-data systems is outlined in detail. Several constraints on the characteristics of the problem formulation are required for the application of the design equations. The consequences of these constraints are investigated by applying the algorithm to a simplified design for a subsystem of a large space structure ground test facility. The investigation of these constraints is continued by application of the design equations and constraints to an extremely simple tracking problem. The result of these investigations is the development of a frequency dependent weighting strategy that allows realistic control problems to be cast in a form compatible with the new algorithm. Further work is indicated in the area of developing strategies for choosing frequency-dependent weights to achieve specific design goals. The use of the freedom in problem formulation to achieve robustness/performance tradeoffs should also be investigated. It is not clear that the algorithm always leads to simpler controllers. The more restrictive formulation may dictate that frequency-dependent weighting adds to the controller order disproportionately. This effect must also be investigated.
    Keywords: COMPUTER PROGRAMMING AND SOFTWARE
    Type: Alabama Univ., Research Reports: 1989 NASA(ASEE Summer Faculty Fellowship Program; 28 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: This report details the results of a one year effort by Ohio University to apply the transfer function modeling and analysis tools developed under NASA Grant NAG8-167 (Irwin, 1992), (Bartholomew, 1992) to attempt the generation of Space Shuttle Main Engine High Pressure Turbopump transfer functions from time domain data. In addition, new enhancements to the transfer function modeling codes which enhance the code functionality are presented, along with some ideas for improved modeling methods and future work. Section 2 contains a review of the analytical background used to generate transfer functions with the SSME transfer function modeling software. Section 2.1 presents the 'ratio method' developed for obtaining models of systems that are subject to single unmeasured excitation sources and have two or more measured output signals. Since most of the models developed during the investigation use the Eigensystem Realization Algorithm (ERA) for model generation, Section 2.2 presents an introduction of ERA, and Section 2.3 describes how it can be used to model spectral quantities. Section 2.4 details the Residue Identification Algorithm (RID) including the use of Constrained Least Squares (CLS) and Total Least Squares (TLS). Most of this information can be found in the report (and is repeated for convenience). Section 3 chronicles the effort of applying the SSME transfer function modeling codes to the a51p394.dat and a51p1294.dat time data files to generate transfer functions from the unmeasured input to the 129.4 degree sensor output. Included are transfer function modeling attempts using five methods. The first method is a direct application of the SSME codes to the data files and the second method uses the underlying trends in the spectral density estimates to form transfer function models with less clustering of poles and zeros than the models obtained by the direct method. In the third approach, the time data is low pass filtered prior to the modeling process in an effort to filter out high frequency characteristics. The fourth method removes the presumed system excitation and its harmonics in order to investigate the effects of the excitation on the modeling process. The fifth method is an attempt to apply constrained RID to obtain better transfer functions through more accurate modeling over certain frequency ranges. Section 4 presents some new C main files which were created to round out the functionality of the existing SSME transfer function modeling code. It is now possible to go from time data to transfer function models using only the C codes; it is not necessary to rely on external software. The new C main files and instructions for their use are included. Section 5 presents current and future enhancements to the XPLOT graphics program which was delivered with the initial software. Several new features which have been added to the program are detailed in the first part of this section. The remainder of Section 5 then lists some possible features which may be added in the future. Section 6 contains the conclusion section of this report. Section 6.1 is an overview of the work including a summary and observations relating to finding transfer functions with the SSME code. Section 6.2 contains information relating to future work on the project.
    Keywords: NUMERICAL ANALYSIS
    Type: NASA-CR-198957 , NAS 1.26:198957
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: Recent findings from modeling and controller design for the NASA-Marshall Single Structure Control Facility have raised questions regarding the ability of modern control design techniques and modern modeling techniques to deal effectively with the stringent modeling and control design requirements of Large Space Structure Control. A brief and general discussion is presented of the results of studies into the modeling and control issues performed under sponsorship of the NASA/ASEE Summer Faculty Fellowship Program. Several issues are addressed. The first is a study of a modeling technique based on least squares identification of individual transfer functions from measured frequency response data. The second is a study of multiobjective optimization techniques applied to the modeling, or system identification, problem. The third issue is a study into the question of whether multiobjective optimization approaches can be effectively used for control system design using only frequency response data, thereby bypassing the difficult modeling problem. The last issue studied involves the resolution of seeming discrepancies between predicted and measured control computer time delays in the Single Structure Control Facility.
    Keywords: COMPUTER OPERATIONS AND HARDWARE
    Type: Alabama Univ., Research Reports: 1990 NASA(ASEE Summer Faculty Fellowship Program; 4 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The most accepted methods for developing models of flexible structures for the analysis, design and simulation of control systems are finite element methods and extraction from experimental data. Using either of these methods, models are often produced with modes that do not significantly add to the fidelity of the model. This paper presents techniques for eliminating these modes. Particular attention is paid to multiple-input, multiple-output systems. First, control system models developed for flexible structures, using finite element methods and experimental data, are briefly discussed. the shortcomings of using models with unnecessary and/or residual modes are delineated. Then, two techniques for reducing the order of models are presented; the first is applicable to single-input, single-output systems and the second for multiple-input, multiple-output systems. Finally, both are illustrated using model data from the proposed NASA Shuttle-C.
    Keywords: CYBERNETICS
    Type: AAS PAPER 90-016 , Annual Rocky Mountain Guidance and Control Conference; Feb 03, 1990 - Feb 07, 1990; Keystone, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1997-09-01
    Print ISSN: 1073-5623
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...