ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Foltz, G. R., Brandt, P., Richter, I., Rodriguez-Fonsecao, B., Hernandez, F., Dengler, M., Rodrigues, R. R., Schmidt, J. O., Yu, L., Lefevre, N., Da Cunha, L. C., Mcphaden, M. J., Araujo, M., Karstensen, J., Hahn, J., Martin-Rey, M., Patricola, C. M., Poli, P., Zuidema, P., Hummels, R., Perez, R. C., Hatje, V., Luebbecke, J. F., Palo, I., Lumpkin, R., Bourles, B., Asuquo, F. E., Lehodey, P., Conchon, A., Chang, P., Dandin, P., Schmid, C., Sutton, A., Giordani, H., Xue, Y., Illig, S., Losada, T., Grodsky, S. A., Gasparinss, F., Lees, T., Mohino, E., Nobre, P., Wanninkhof, R., Keenlyside, N., Garcon, V., Sanchez-Gomez, E., Nnamchi, H. C., Drevillon, M., Storto, A., Remy, E., Lazar, A., Speich, S., Goes, M., Dorrington, T., Johns, W. E., Moum, J. N., Robinson, C., Perruches, C., de Souza, R. B., Gaye, A. T., Lopez-Paragess, J., Monerie, P., Castellanos, P., Benson, N. U., Hounkonnou, M. N., Trotte Duha, J., Laxenairess, R., & Reul, N. The tropical Atlantic observing system. Frontiers in Marine Science, 6(206), (2019), doi:10.3389/fmars.2019.00206.
    Description: he tropical Atlantic is home to multiple coupled climate variations covering a wide range of timescales and impacting societally relevant phenomena such as continental rainfall, Atlantic hurricane activity, oceanic biological productivity, and atmospheric circulation in the equatorial Pacific. The tropical Atlantic also connects the southern and northern branches of the Atlantic meridional overturning circulation and receives freshwater input from some of the world’s largest rivers. To address these diverse, unique, and interconnected research challenges, a rich network of ocean observations has developed, building on the backbone of the Prediction and Research Moored Array in the Tropical Atlantic (PIRATA). This network has evolved naturally over time and out of necessity in order to address the most important outstanding scientific questions and to improve predictions of tropical Atlantic severe weather and global climate variability and change. The tropical Atlantic observing system is motivated by goals to understand and better predict phenomena such as tropical Atlantic interannual to decadal variability and climate change; multidecadal variability and its links to the meridional overturning circulation; air-sea fluxes of CO2 and their implications for the fate of anthropogenic CO2; the Amazon River plume and its interactions with biogeochemistry, vertical mixing, and hurricanes; the highly productive eastern boundary and equatorial upwelling systems; and oceanic oxygen minimum zones, their impacts on biogeochemical cycles and marine ecosystems, and their feedbacks to climate. Past success of the tropical Atlantic observing system is the result of an international commitment to sustained observations and scientific cooperation, a willingness to evolve with changing research and monitoring needs, and a desire to share data openly with the scientific community and operational centers. The observing system must continue to evolve in order to meet an expanding set of research priorities and operational challenges. This paper discusses the tropical Atlantic observing system, including emerging scientific questions that demand sustained ocean observations, the potential for further integration of the observing system, and the requirements for sustaining and enhancing the tropical Atlantic observing system.
    Description: MM-R received funding from the MORDICUS grant under contract ANR-13-SENV-0002-01 and the MSCA-IF-EF-ST FESTIVAL (H2020-EU project 797236). GF, MG, RLu, RP, RW, and CS were supported by NOAA/OAR through base funds to AOML and the Ocean Observing and Monitoring Division (OOMD; fund reference 100007298). This is NOAA/PMEL contribution #4918. PB, MDe, JH, RH, and JL are grateful for continuing support from the GEOMAR Helmholtz Centre for Ocean Research Kiel. German participation is further supported by different programs funded by the Deutsche Forschungsgemeinschaft, the Deutsche Bundesministerium für Bildung und Forschung (BMBF), and the European Union. The EU-PREFACE project funded by the EU FP7/2007–2013 programme (Grant No. 603521) contributed to results synthesized here. LCC was supported by the UERJ/Prociencia-2018 research grant. JOS received funding from the Cluster of Excellence Future Ocean (EXC80-DFG), the EU-PREFACE project (Grant No. 603521) and the BMBF-AWA project (Grant No. 01DG12073C).
    Keywords: Tropical Atlantic Ocean ; Observing system ; Weather ; Climate ; Hurricanes ; Biogeochemistry ; Ecosystems ; Coupled model bias
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-09-01
    Print ISSN: 2169-9275
    Electronic ISSN: 2169-9291
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-05-11
    Description: The Sea Surface Temperature (SST) intraseasonal variability ([40-90] days ) along the coast of Peru is commonly attributed to the efficient oceanic connection with the equatorial variability. Here, we investigate the respective roles of local and remote equatorial forcing on the intraseasonal SST variability off central Peru (8°S-16°S) during the 2000-2008 period, based on the experimentation with a regional ocean model. We conduct model experiments with different open lateral boundary conditions and/or surface atmospheric forcing ( i.e . climatological or not). Despite evidence of clear propagations of coastal trapped waves of equatorial origin and the comparable marked seasonal cycle in intraseasonal Kelvin wave and coastal SST variability (i.e. peak in Austral summer), this remote equatorial forcing only accounts for ~20% of the intraseasonal SST regime, which instead is mainly forced by the local winds and heat-fluxes. A heat budget analysis further reveals that during the Austral summer, despite the weak along-shore upwelling (downwelling) favourable wind stress anomalies, significant cool (warm) SST anomalies along the coast are to a large extent driven by Ekman-induced advection. This is shown to be due to the shallow mixed layer that increases the efficiency by which wind stress anomalies relates to SST through advection. Diabatic processes also contribute to the SST intraseasonal regime, which tends to shorten the lag between peak SST and wind stress anomalies compared to what is predicted from an advective mixed-layer model.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-08
    Print ISSN: 2169-9275
    Electronic ISSN: 2169-9291
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Publication Date: 2016-05-06
    Description: In this study, uncoupled and coupled ocean–atmosphere simulations are carried out for the California Upwelling System to assess the dynamic ocean–atmosphere interactions, namely, the ocean surface current feedback to the atmosphere. The authors show the current feedback, by modulating the energy transfer from the atmosphere to the ocean, controls the oceanic eddy kinetic energy (EKE). For the first time, it is demonstrated that the current feedback has an effect on the surface stress and a counteracting effect on the wind itself. The current feedback acts as an oceanic eddy killer, reducing by half the surface EKE, and by 27% the depth-integrated EKE. On one hand, it reduces the coastal generation of eddies by weakening the surface stress and hence the nearshore supply of positive wind work (i.e., the work done by the wind on the ocean). On the other hand, by inducing a surface stress curl opposite to the current vorticity, it deflects energy from the geostrophic current into the atmosphere and dampens eddies. The wind response counteracts the surface stress response. It partly reenergizes the ocean in the coastal region and decreases the offshore return of energy to the atmosphere. Eddy statistics confirm the current feedback dampens the eddies and reduces their lifetime, improving the realism of the simulation. Finally, the authors propose an additional energy element in the Lorenz diagram of energy conversion: namely, the current-induced transfer of energy from the ocean to the atmosphere at the eddy scale.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-08-27
    Description: The fate of the organic matter (OM) produced by marine life controls the major biogeochemical cycles of the Earth's system. The OM produced through photosynthesis is either preserved, exported towards sediments or degraded through remineralisation in the water column. The productive eastern boundary upwelling systems (EBUSs) associated with oxygen minimum zones (OMZs) would be expected to foster OM preservation due to low O2 conditions. But their intense and diverse microbial activity should enhance OM degradation. To investigate this contradiction, sediment traps were deployed near the oxycline and in the OMZ core on an instrumented moored line off Peru. Data provided high-temporal-resolution O2 series characterising two seasonal steady states at the upper trap: suboxic ([O2]
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-10-15
    Description: The relative roles played by the remote El Niño–Southern Oscillation (ENSO) forcing and the local air–sea interactions in the tropical Atlantic are investigated using an intermediate coupled model (ICM) of the tropical Atlantic. The oceanic component of the ICM consists of a six-baroclinic mode ocean model and a simple mixed layer model that has been validated from observations. The atmospheric component is a global atmospheric general circulation model developed at the University of California, Los Angeles (UCLA). In a forced context, the ICM realistically simulates both the sea surface temperature anomaly (SSTA) variability in the equatorial band, and the relaxation of the Atlantic northeast trade winds and the intensification of the equatorial westerlies in boreal spring that usually follows an El Niño event. The results of coupled experiments with or without Pacific ENSO forcing and with or without explicit air–sea interactions in the equatorial Atlantic indicate that the background energy in the equatorial Atlantic is provided by ENSO. However, the time scale of the variability and the magnitude of some peculiar events cannot be explained solely by ENSO remote forcing. It is demonstrated that the peak of SSTA variability in the 1–3-yr band as observed in the equatorial Atlantic is due to the local air–sea interactions and is not a linear response to ENSO. Seasonal phase locking in boreal summer is also the result of the local coupling. The analysis of the intrinsic sustainable modes indicates that the Atlantic El Niño is qualitatively a noise-driven stable system. Such a system can produce coherent interdecadal variability that is not forced by the Pacific or extraequatorial variability. It is shown that when a simple slab mixed layer model is embedded into the system to simulate the northern tropical Atlantic (NTA) SST variability, the warming over NTA following El Niño events have characteristics (location and peak phase) that depend on air–sea interaction in the equatorial Atlantic. In the model, the interaction between the equatorial mode and NTA can produce a dipolelike structure of the SSTA variability that evolves at a decadal time scale. The results herein illustrate the complexity of the tropical Atlantic ocean–atmosphere system, whose predictability jointly depends on ENSO and the connections between the Atlantic modes of variability.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2008-11-15
    Description: Intraseasonal equatorial Kelvin wave activity (IEKW) at a low frequency in the Pacific is investigated using the Simple Ocean Data Assimilation (SODA) oceanic reanalyses. A vertical and horizontal mode decomposition of SODA variability allows estimation of the Kelvin wave amplitude according to the most energetic baroclinic modes. A wavenumber–frequency analysis is then performed on the time series to derive indices of modulation of the IEKW at various frequency bands. The results indicate that the IEKW activity undergoes a significant modulation that projects onto baroclinic modes and is not related in a straightforward manner to the low-frequency climate variability in the Pacific. Linear model experiments corroborate that part of the modulation of the IEKW is tightly linked to change in oceanic mean state rather than to the low-frequency change of atmospheric equatorial variability.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-07-01
    Description: Changes in the mean circulation of the equatorial Pacific Ocean partly control the strong decadal modulation of El Niño–Southern Oscillation (ENSO). This relationship is considered from the linear stability of a conceptual recharge/discharge model with parameters tuned from the observed mean state. Whereas decadal changes in the mean thermocline depth alone are usually considered in conceptual ENSO models, here focus is given to decadal changes in the mean stratification of the entire upper ocean (e.g., the mean thermocline depth, intensity, and thickness). Those stratification changes modify the projection of wind stress forcing momentum onto the gravest ocean baroclinic modes. Their influence on the simulated frequency and growth rate is comparable in intensity to the one of usual thermodynamic and atmospheric feedbacks, while they have here a secondary effect on the spatial structure and propagation of SST anomalies. This sensitivity is evidenced in particular for the climate shift of the 1970s in the Simple Ocean Data Assimilation (SODA) dataset, as well as in a preindustrial simulation of the Geophysical Fluid Dynamics Laboratory (GFDL) model showing stratification changes similar to the ones after 2000. Despite limitations of the linear stability approach, conclusions on the sensitivity to stratification may be extended to interpret the modulation and diversity of ENSO in observations and in general circulation models.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...