ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements of the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2006
    Description: Two years of moored oceanographic and automatic weather station data which span the winter ice seasons of 2001-2003 within Marguerite Bay on the western Antarctic Peninsula (wAP) shelf were collected as part of the Southern Ocean Global Ocean Ecosystems Dynamics program. In order to characterize the ice environment in the region, a novel methodology is developed for determining ice coverage, draft and velocity from moored upward-looking acoustic Doppler current profiler data. A linear momentum balance shows the importance of internal ice stresses in the observed motion of the ice pack. Strong inertial, not tidal, motions were observed in both the sea ice and upper ocean. Estimates of upward diapycnal fluxes of heat and salt from the Upper Circumpolar Deep Water to the surface mixed layer indicate almost no contribution from double diffusive convection. A one-dimensional vertical mixed layer model adapted for investigation of mixing beneath an ice-covered ocean indicates that the initial wind event, rather than subsequent inertial shear, causes the majority of the mixing. This work points towards episodic wind-forced shear at the base of the mixed layer coupled with static instability from brine rejection due to ice production as a major factor in mixing on the wAP shelf.
    Description: The work described in this thesis was funded by the National Science Foundation Office of Polar Programs grant # 99-100092. Additional funding came from the MIT Houghton Fund, the WHOI Ocean Venture Fund and the WHOI Education Office.
    Keywords: Sea ice ; Ocean-atmosphere interaction ; Nathaniel B. Palmer (Ship) Cruise NBP01-03 ; Laurence M. Gould (Ship) Cruise LMG01-06
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: 4150906 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Southern Ocean GLOBal ocean ECosystems
    Description: As part of the U.S. Southern Ocean GLOBEC program, moored time series measurements of temperature, conductivity (salinity), pressure, velocity, and acoustic backscatter were made from March 2001 to March 2003 in and near Marguerite Bay, located on the Antarctic Peninsula western shelf. To monitor surface forcing during the moored array observations, two automatic weather stations (AWSs) were deployed on islands in Marguerite Bay and time series of wind, air temperature, pressure, and relative humidity were collected from May 2001 through March 2003. This report describes the individual moorings, their locations and local bathymetry, the instrumentation used and measurement depths, calibration and data processing steps taken to produce final time series, and basic plots of the final time series. The AWS data acquisition and processing are also described and basic plots of the final meteorological time series presented. Directions are given about how to access the raw and processed moored and AWS data via the SO GLOBEC website (http://globec.whoi.edu/jg/dir/globec/soglobec/).
    Description: Funding was provided by the National Science Foundation under contract number OPP-99-10092.
    Keywords: SO GLOBEC ; Antarctica ; Coastal oceanography ; Laurence M. Gould (Ship) Cruise LMG01-03 ; Laurence M. Gould (Ship) Cruise LMG02-1A ; Laurence M. Gould (Ship) Cruise LMG03-02 ; Nathaniel B. Palmer (Ship) Cruise NBP01-03
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: 10401290 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 55 (2008): 351-364, doi:10.1016/j.dsr2.2007.11.004.
    Description: A technique for the analysis of data from a subsurface moored upward-looking acoustic Doppler current profiler (ADCP) to determine ice coverage, draft and velocity is presented and applied to data collected in Marguerite Bay on the western Antarctic Peninsula shelf. This method provides sea ice information when no dedicated upward-looking sonar (ULS) data is available. Ice detection is accomplished using windowed variances of ADCP vertical velocity, vertical error velocity, and surface horizontal speed. ADCP signal correlation and backscatter intensity were poor indicators of the presence of ice at this site. Ice draft is estimated using a combination of ADCP backscatter data, atmospheric and oceanic pressure data, and information about the thermal stratification. This estimate requires corrections to the ADCP-derived range for instrument tilt and sound speed profile. Uncertainties of ± 0.20 m during midwinter and ± 0.40 m when the base of the surface mixed layer is above the ADCP for ice draft are estimated based on (a) a Monte Carlo simulation, (b) uncertainty in the sound speed correction, and (c) performance of the zero-draft estimate during times of known open water. Ice velocity is taken as the ADCP horizontal velocity in the depth bin specified by the range estimate.
    Description: This work was supported by the NSF Office of Polar Programs through U.S. Southern Ocean GLOBEC grants OPP 99-10092 and OPP 06-23223, the WHOI Smith Chair in Coastal Oceanography, and the WHOI Education Office.
    Keywords: Sea ice ; Ice draft ; Ice drift ; ADCP ; Marguerite Bay ; Antarctic Peninsula
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-07-01
    Print ISSN: 0967-0645
    Electronic ISSN: 1879-0100
    Topics: Biology , Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Publication Date: 2020-08-05
    Description: A technique for the analysis of data from a subsurface moored upward-looking acoustic Doppler current profiler (ADCP) to determine ice coverage, draft and velocity is presented and applied to data collected in Marguerite Bay on the western Antarctic Peninsula shelf. This method provides sea-ice information when no dedicated upward-looking sonar (ULS) data are available. Ice detection is accomplished using windowed variances of ADCP vertical velocity, vertical error velocity, and surface horizontal speed. ADCP signal correlation and backscatter intensity were poor indicators of the presence of ice at this site. Ice draft is estimated using a combination of ADCP backscatter data, atmospheric and oceanic pressure data, and information about the thermal stratification. This estimate requires corrections to the ADCP-derived range for instrument tilt and sound speed profile. Uncertainties of ±0.20 m during midwinter and ±0.40 m when the base of the surface mixed layer is above the ADCP for ice draft are estimated based on: (a) a Monte Carlo simulation, (b) uncertainty in the sound speed correction, and (c) performance of the zero-draft estimate during times of known open water. Ice velocity is taken as the ADCP horizontal velocity in the depth bin specified by the range estimate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...