ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2019-07-19
    Description: The research purpose of the project was to determine the fate of microorganisms in space-generated solid wastes after processing by a Heat Melt Compactor (HMC), which is a candidate solid waste treatment technology. Five HMC product disks were generated at Ames Research Center (ARC), Waste Management Systems element. The feed for two was simulated space-generated trash and feed for three was Volume F compartment wet waste returned on STS 130. Conventional microbiological methods were used to detect and enumerate microorganisms in HMC disks and in surface swab samples of HMC hardware before and after operation. Also, biological indicator test strips were added to the STS trash prior to compaction to test if HMC processing conditions, 150 C for approx 3 hr and dehydration, were sufficient to eliminate the test bacteria on the strips. During sample acquisition at KSC, the HMC disk surfaces were sanitized with 70% alcohol to prevent contamination of disk interiors. Results from microbiological assays indicated that numbers of microbes were greatly reduced but not eliminated by the 70% alcohol. Ten 1.25 cm diameter cores were aseptically cut from each disk to sample the disk interior. The core material was run through the microbial characterization analyses after dispersal in sterile diluent. Low counts of viable bacteria (5 to 50 per core) were found but total direct counts were 6 to 8 orders of magnitude greater. These results indicate that the HMC operating conditions might not be sufficient for complete waste sterilization, but the vast majority of microbes present in the wastes were dead or non-cultivable after HMC treatment. The results obtained from analyses of the commercial spore test strips that had been added fo the wastes prior to HMC operation further indicated that the HMC was sterilizing the wastes. Nearly all strips were recovered from the HMC disks and all of these were negative for spore growth when run through the manufacturer's protocol. The 10(exp 6) or so spores impregnated into the strips were no longer viable. Control test strips, i.e., not exposed to the HMC conditions, were all strongly positive. All isolates from the cultivable counts were identified, leading to one concern: several were identified as Staphylococcus aureus, a human pathogen. The project reported here provides microbial characterization support to the Waste Management Systems element of the Life Support and Habitation Systems program.
    Keywords: Man/System Technology and Life Support
    Type: KSC-2011-303 , 42nd International Conference on Environmental Systems (ICES); Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Bioreactor research is mostly limited to continuous stirred-tank reactors (CSTRs) which are not an option for microgravity (g) applications due to the lack of a gravity gradient to drive aeration as described by the Archimedes principle. Bioreactors and filtration systems for treating wastewater in g could avoid the need for harsh pretreatment chemicals and improve overall water recovery. Solution: Membrane Aerated Bioreactors (MABRs) for g applications, including possible use for wastewater treatment systems for the International Space Station (ISS).
    Keywords: Technology Utilization and Surface Transportation; Space Processing
    Type: KSC-E-DAA-TN16865 , COSPAR Scientific Assembly; Aug 02, 2014 - Aug 10, 2014; Moscow, Russia; Russia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Bioreactors, such as the aerated hollow fiber membrane type, have been proposed and studied for a number of years as an alternate approach for treating wastewater streams for space exploration. Several challenges remain to be resolved before these types of bioreactors can be used in space settings, including transporting the bioreactors with intact and active biofilms, whether that be to the International Space Station or beyond, or procedures for safing the systems and placing them into a dormant state for later start-up. Little information is available on such operations as it is not common practice for terrestrial systems. This study explored several dormancy processes for established bioreactors to determine optimal storage and recovery conditions. Procedures focused on complete isolation of the microbial communities from an operational standpoint and observing the effects of: 1) storage temperature, and 2) storage with or without the reactor bulk fluid. The first consideration was tested from a microbial integrity and power consumption standpoint; both ambient temperature (25 C) and cold (4 C) storage conditions were studied. The second consideration was explored; again, for microbial integrity as well as plausible real-world scenarios of how terrestrially established bioreactors would be transported to microgravity and stored for periods of time between operations. Biofilms were stored without the reactor bulk fluid to simulate transport of established biofilms into microgravity, while biofilms stored with the reactor bulk fluid simulated the most simplistic storage condition to implement operations for extended periods of nonuse. Dormancy condition did not have an influence on recovery in initial studies with immature biofilms (48 days old), however a lengthy recovery time was required (20+ days). Bioreactors with fully established biofilms (13 months) were able to recover from a 7-month dormancy period to steady state operation within 4 days (approx. 1 residence cycle). Results indicate a need for future testing on biofilm age and health and further exploration of dormancy length.
    Keywords: Man/System Technology and Life Support; Chemistry and Materials (General)
    Type: ICES-2015-197 , KSC-E-DAA-TN23858 , International Conference on Environmental Systems; Jul 12, 2015 - Jul 16, 2015; Bellevue WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The on going purpose of the project efforts was to characterize and determine the fate of microorganisms in space-generated solid wastes before and after processing by candidate solid waste processing. For FY 11, the candidate technology that was assessed was the Heat Melt Compactor (HMC). The scope included five HMC. product disks produced at ARC from either simulated space-generated trash or from actual space trash, Volume F compartment wet waste, returned on STS 130. This project used conventional microbiological methods to detect and enumerate microorganisms in heat melt compaction (HMC) product disks as well as surface swab samples of the HMC hardware before and after operation. In addition, biological indicators were added to the STS trash prior to compaction in order to determine if these spore-forming bacteria could survive the HMC processing conditions, i.e., high temperature (160 C) over a long duration (3 hrs). To ensure that surface dwelling microbes did not contaminate HMC product disk interiors, the disk surfaces were sanitized with 70% alcohol. Microbiological assays were run before and after sanitization and found that sanitization greatly reduced the number of identified isolates but did not totally eliminate them. To characterize the interior of the disks, ten 1.25 cm diameter core samples were aseptically obtained for each disk. These were run through the microbial characterization analyses. Low counts of bacteria, on the order of 5 to 50 per core, were found, indicating that the HMC operating conditions might not be sufficient for waste sterilization. However, the direct counts were 6 to 8 orders of magnitude greater, indicating that the vast majority of microbes present in the wastes were dead or non-cultivable. An additional indication that the HMC was sterilizing the wastes was the results from the added commercial spore test strips to the wastes prior to HMC operation. Nearly all could be recovered from the HMC disks post-operation and all were showed negative growth when run through the manufacturer's protocol, meaning that the 106 or so spores impregnated into the strips were dead. Control test strips, i.e., not exposed to the HMC conditions were all strongly positive. One area of concern is that the identities of isolates from the cultivable counts included several human pathogens, namely Staphylococcus aureus. The project reported here provides microbial characterization support to the Waste Management Systems element of the Life Support and Habitation Systems program.
    Keywords: Man/System Technology and Life Support
    Type: KSC-2012-071 , 42nd International Conference on Environmental Systems (ICES); Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The fate of space-generated solid wastes, including trash, for future missions is under consideration by NASA. Several potential treatment options are under consideration and active technology development. Potential fates for space-generated solid wastes are: Storage without treatment; storage after treatment(s) including volume reduction, water recovery, sterilization, and recovery plus recycling of waste materials. Recycling might be important for partial or full closure scenarios because of the prohibitive costs associated with resupply of consumable materials. For this study, we determined the composition of trash returned from four recent STS missions. The trash material was 'Volume F' trash and other trash, in large zip-lock bags, that accompanied the Volume F trash. This is the first of two submitted papers on these wastes. This one will cover trash content, weight and water content. The other will report on the microbial Characterization of this trash. STS trash was usually made available within 2 days of landing at KSC. The Volume F bag was weighed, opened and the contents were catalogued and placed into one of the following categories: food waste (and containers), drink containers, personal hygiene items - including EVA maximum absorbent garments (MAGs)and Elbow packs (daily toilet wipes, etc), paper, and packaging materials - plastic firm and duct tape. Trash generation rates for the four STS missions: Total wet trash was 0.602 plus or minus 0.089 kg(sub wet) crew(sup -1) d(sup -1) containing about 25% water at 0.154 plus or minus 0.030 kg(sub water) crew(sup -1) d(sup -1) (avg plus or minus stdev). Cataloguing by category: personal hygiene wastes accounted for 50% of the total trash and 69% of the total water for the four missions; drink items were 16% of total weight and 16% water; food wastes were 22% of total weight and 15% of the water; office waste and plastic film were 2% and 11% of the total waste and did not contain any water. The results can be used by NASA to determine requirements and criteria for Waste Management Systems on future missions.
    Keywords: Space Transportation and Safety
    Type: KSC-2011-126 , KSC-2011-126R , 41st International Conference of Environmental Systems; Jul 17, 2011 - Jul 21, 2011; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The fate of space-generated solid wastes, including trash, for future missions is under consideration by NASA. Several potential treatment options are under active technology development. Potential fates for space-generated solid wastes: Storage without treatment; storage after treatment(s) including volume reduction, water recovery, sterilization, and recovery plus recycling of waste materials. For this study, a microbial characterization was made on trash returned from four recent STS missions. The material analyzed were 'Volume F' trash and other bags of accompanying trash. This is the second of two submitted papers on these wastes. This first one covered trash content, weight and water content. Upon receipt, usually within 2 days of landing, trash contents were catalogued and placed into categories: drink containers, food waste, personal hygiene items, and packaging materials, i.e., plastic film and duct tape. Microbial counts were obtained with cultivatable counts on agar media and direct counts using Acridine Orange fluorescent stain (AODC). Trash bag surfaces, 25 square cm , were also sampled. Direct counts were approximately 1 x 10(exp 6) microbes/square cm and cultivatable counts ranged from 1 x 10 to 1 X 10(exp 4) microbes/ square cm-2. Aerobic microbes, aerobic sporeformers, and yeasts plus molds were common for all four missions. Waste items from each category were placed into sterile ziplock bags and 1.5 L sterile DI water added. These were then dispersed by hand shaking for 2 min. prior to inoculation of count media or determining AODC. In general, cultivatable microbes were found in drinks, food wastes, and personal hygiene items. Direct counts were usually higher than cultivatable counts. Some pathogens were found: Staphylococcus auerus, Escherichia coli (fecal wastes). Count ranges: drink pouches - AODC 2 x 10(exp 6) to 1 X 10(exp 8) g(sub fw) (exp -1); cultivatable counts variable between missions; food wastes: Direct counts were close to aerobic plate counts. Counts ranged from 10(exp 6) to 10(exp 9) per g(sub fw). Identities of isolates from cultivation media were obtained using a Biolog Microbial ID System or microSEQ molecular ID methodology using an ABI3130 gene analyzer.
    Keywords: Man/System Technology and Life Support
    Type: KSC-2011-124 , KSC-2011-124R , 41st International Conference of Environmental Systems (ICES); Jul 17, 2011 - Jul 21, 2011; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: The Veggie system focuses on growing fresh produce that can be harvested and consumed by astronauts. The microbial colonies in each Veggie experiment are evaluated to determine the safety level of the produce and then differences between flight and ground samples. The identifications of the microbial species can detail risks or benefits to astronaut and plant health. Each Veggie ground or flight experiment includes six plants grown from seeds that are glued into wicks in Teflon pillows filled with clay arcillite and fertilizer. Fungal colonies were isolated from seed wicks, growth media, and lettuce (cv. 'Outredgeous') roots grown in VEG-01B pillows on ISS and in corresponding ground control pillows grown in controlled growth chambers. The colonies were sorted by morphology and identified using MicroSeq(TM) 500 16s rDNA Bacterial Identification System and BIOLOG GEN III MicroPlate(TM). Health risks for each fungal identification were then assessed using literature sources. The goal was to identify all the colonies isolated from flight and ground control VEG-01B plants, roots, and rooting medium and compare the resulting identifications.
    Keywords: Life Sciences (General); Man/System Technology and Life Support
    Type: KSC-E-DAA-TN45618
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: With NASA focused on researching and developing technology for deep space missions, the need for a reliable supplementary food source must also be considered. For the ISS, resupplying the food source is more practical and cost effect since the facility is in low Earth orbit. However, as NASA attempts to push the frontier in space, the costs and distance for resupply will surely increase. Plants would contribute to the proportion of food and reduce the dependency on food from Earth. In addition, plants would provide oxygen production, carbon dioxide removal, and psychological benefits. As a result, a vegetable production system, VEGGIE, was developed for NASA to produce salad crops with minimal resources and study the beneficial effects. The VEGGIE pillow is a single use bag for growing crops that is used with the VEGGIE hardware. The VEGGIE pillow was tested with four different species of plants with the cut-and-come-again harvest method to determine the greatest yield. Instead of harvesting the entire plant, the harvest consisted of cutting leaves to allow the plant to regrow leaves. The harvest methods included cutting the plants weekly, bi-weekly, and monthly. A fifth plant species, radishes, was also harvested and replanted. Microbial load analysis and an ANOVA significance test were utilized. The data suggest that the two Brassica plants have the greatest yields; however, the microbial load is also greatest for the two plants per gram of fresh weight. Furthermore, the results support the reuse of pillows for multiple harvests as shown by the replanted radishes.
    Keywords: Man/System Technology and Life Support
    Type: KSC-2011-235
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-27
    Description: Several dwarf tomato and pepper varieties were evaluated under ISS-simulated growth conditions (22C, 50% RH, 1500 ppm CO2, and 300 mol m(exp -2) s(exp -1) of light for 16 h per day) with the goal of selecting those with the best growth, nutrition, and organoleptic potential for use in a pick and eat salad crop system on ISS and future exploration flights. Testing included six cultivars of tomato (Red Robin, Scarlet Sweet N Neat, Tiny Tim, Mohamed, Patio Princess, and Tumbler) and six cultivars of pepper (Red Skin, Fruit Basket, Cajun Belle, Chablis, Sweet Pickle, and Pompeii). Plants were grown to an age sufficient to produce fruit (70 to 106 days for tomato and 109 days for pepper). Tomato fruits were harvested when they showed full red color, beginning ca. 70-days age and then at weekly intervals thereafter, while peppers were grown until numerous fruits showed color and all fruits (green and colored) were harvested once at the end of the test. Plant sizes, yields, and nutritional attributes were measured and used to down-select to three cultivars for each species. In particular, we were interested in cultivars that were short (dwarf) but still produced high yields. Nutritional data included elemental (Ca, Mg, Fe, and K) composition, vitamin K, phenolics, lycopene, anthocyanin, lutein, and zeaxanthin. The three down-selected cultivars for each species were evaluated for sensory attributes, including overall acceptability, appearance, color intensity aroma, flavor and texture. The combined data were compared and given weighting factors to rank the cultivars as potential candidates for testing in space. For tomato, the ranking was 1) cv. Mohamed, 2) cv. Red Robin, and 3) cv. Sweet N Neat. For pepper, the ranking was 1) cv. Pompeii, 2) cv. Red Skin, and 3) cv. Fruit Basket. These rankings are somewhat subjective but provide a good starting point for conducting higher fidelity testing with these crops (e.g., testing with LED lighting similar to the Veggie plant unit), and ultimately conducting flight experiments.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN68404 , International Conference on Environmental Systems (ICES) 2019; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...