ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The flhDC operon of Salmonella typhimurium is the master control operon required for the expression of the entire flagellar regulon. The flagellar master operon was placed under the tetracycline-inducible promoter PtetA using the T-POP transposon. Cells containing this construct are motile in the presence of tetracycline and non-motile without inducer present. No flagella were visible under the electron microscope when cells were grown without inducer. The class 1, class 2 and class 3 promoters of the flagellar regulon are temporally regulated. After addition of tetracycline, the class 1 flhDC operon was transcribed immediately. Transcription of flgM (which is transcribed from both class 2 and class 3 promoters) began 15 min after induction. At 20 min after induction, the class 2 fliA promoter became active and intracellular FliA protein levels increased; at 30 min after induction, the class 3 fliC promoter was activated. Induction of fliC gene expression coincides with the appearance of FlgM anti-sigma factor in the growth medium. This also coincides with the completion of hook–basal body structures. Rolling cells first appeared 35 min after induction, and excess hook protein (FlgE) was also found in the growth medium at this time. At 45 min after induction, nascent flagellar filaments became visible in electron micrographs and over 40% of the cells exhibited some swimming behaviour. Multiple flagella assemble and grow on individual cells after induction of the master operon. These results confirm that the flagellar regulatory hierarchy of S. typhimurium is temporally regulated after induction. Both FlgM secretion and class 3 gene expression occur upon completion of the hook–basal body structure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Microbiology 52 (1998), S. 231-286 
    ISSN: 0066-4227
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract A mechanism for regulating gene expression at the level of transcription utilizes an antagonist of the sigma transcription factor known as the anti-sigma (anti-sigma) factor. The cytoplasmic class of anti-sigma factors has been well characterized. The class includes AsiA form bacteriophage T4, which inhibits Escherichia colisigma70; FlgM, present in both gram-positive and gram-negative bacteria, which inhibits the flagella sigma factor sigma28; SpoIIAB, which inhibits the sporulation-specific sigma factors, sigmaF and sigmaG, of Bacillus subtilis; RbsW of B. subtilis, which inhibits stress response sigma factor sigmaB; and DnaK, a general regulator of the heat shock response, which in bacteria inhibits the heat shock sigma factor sigma32. In addition to this class of well-characterized cytoplasmic anti-sigma factors, a new class of homologous, inner-membrane-bound anti-sigma factors has recently been discovered in a variety of eubacteria. This new class of anti-sigma factors regulates the expression of so-called extracytoplasmic functions, and hence is known as the ECF subfamily of anti-sigma factors. The range of cell processes regulated by anti-sigma factors is highly varied and includes bacteriophage phage growth, sporulation, stress response, flagellar biosynthesis, pigment production, ion transport, and virulence.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Helicobacter pylori is thought to regulate gene ex-pression with a very small set of regulatory genes. We identified a previously unannotated open reading frame (ORF) in the H. pylori 26695 genome (HP1122) as a putative H. pylori flgM gene (σ28 factor antagonist) by a motif-based bioinformatic approach. Deletion of HP1122 resulted in a fourfold increase in transcription of the σ28-dependent major flagellin gene flaA, supporting the function of HP1122 as H. pylori FlgM. Helicobacter pylori FlgM lacks a conserved 20-amino-acid N-terminal domain of enterobacterial FlgM proteins, but was able to interact with the Salmonella typhimuriumσ28 (FliA) and inhibit the expression of FliA-dependent genes in Salmonella. Helicobacter pylori FlgM inhibited FliA to the same extent in a Salmonella strain with an intact flagellar export system and in an export-deficient strain. Helicobacter pylori FliA was able to drive transcription of FliA-dependent genes in Salmonella. The effects of mutations in the H. pylori flgM and fliA genes on the H. pylori transcriptome were analysed using whole genome DNA microarrays. The antagonistic roles of FlgM and FliA in controlling the transcription of the major flagellin gene flaA were confirmed, and two additional FliA/FlgM dependent operons (HP472 and HP1051/HP1052) were identified. None of the three genes contained in these operons has a known function in flagellar biogenesis in other bacteria. Like other motile bacteria, H. pylori has a FliA/FlgM pair of sigma and anti-sigma factors, but the genes controlled by these differ markedly from the Salmonella/Escherichia coli paradigm.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Molecular microbiology 30 (1998), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The flagellar-specific anti-sigma factor, FlgM, inhibits the expression of late flagellar genes until the hook–basal body structure is assembled and competent for export of the flagellins and hook-associated proteins (flagellar late proteins). FlgM monitors this assembly checkpoint by being a substrate for export via the hook–basal body structure, which includes a type III protein secretion complex. Amino acid sequence alignment of late-secreted flagellar proteins identified a region of homology present in the amino-terminus of FlgM and the other late flagellar proteins, but not in flagellar proteins secreted earlier during flagellar biosynthesis. Single amino acid substitutions at specific positions within this motif decreased the export of FlgM. Deletion of this region (S3-P11) resulted in lower intracellular FlgM levels, but did not prevent recognition and export by the flagellar-specific secretion system. Mutations were isolated in a second region of FlgM spanning residues K27 to A65 that exhibited increased anti-σ28 activity. These FlgM ‘hyperinhibitor’ mutants were secreted less than wild-type FlgM. Mutations that interfere with the secretion of FlgM without abolishing anti-σ28 activity have a negative effect upon the secretion of a His-tagged FlgM mutant that lacks anti-σ28 activity. Models are proposed to explain the dominant negative phenotype of the FlgM secretion mutants reported in this study.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The Hin recombinase mediates the site-specific inversion of a segment of the Salmonella chromosome between two flanking 26 bp hix DNA recombination sites. Mutations in two amino acid residues, R43 and R69 of the catalytic domain of the Hin recombinase, were identified that can compensate for loss of binding resulting from elimination of certain major and minor groove contacts within the hix recombination sites. With one exception, the R43 and R69 mutants were also able to bind a hix sequence with an additional 4 bp added to the centre of the site, unlike wild-type Hin. Purified Hin mutants R43H and R69C had both partial cleavage and inversion activities in vitro while mutants R43L, R43C, R69S, and R69P had no detectable cleavage and inversion activities. These data support a model in which the catalytic domain plays a role in DNA-binding specificity, and suggest that the arginine residues at positions 43 and 69 function to position the Hin recombinase on the DNA for a step in the recombination reaction which occurs either at and/or prior to DNA cleavage.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 16 (1995), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Despite the isolation of an anti-sigma factor over 20 years ago, it is only recently that the concept of an anti-sigma factor emerged as a general mechanism of transcriptional regulation in prokaryotic systems. Anti-sigma factors bind to sigma factors and inhibit their transcriptional activity. Studies on the mechanism of action of anti-sigma factors has shed new light on the regulation of gene expression in bacteria, as the anti-sigma factors add another layer to transcriptional control via negative regulation. Their cellular roles are as diverse as FlgM of Salmonella typhimurium, which can be exported to sense the structural state of the flagellar organelle, to SpollAB of Bacillus subtilis participating in the switch from one cell type to another during the process of sporulation. Additionally, the bacteriophage T4 uses an anti-sigma factor to sabotage the Escherichia coli E·σ70 RNA polymerase in order to direct exclusive transcription of its own genes. Cross-linking., co-immuno-precipitations, and co-purification indicate that the anti-sigma factors directly interact with their corresponding sigma factor to negatively regulate transcription. in B. subtilis, anti anti-sigma factors regulate anti-sigma factors by preventing an anti-sigma factor from interacting with its cognate sigma factor, thereby allowing transcription to occur.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The type III secretion (TTS) chaperones are small proteins that act either as cytoplasmic bodyguards, protecting their secretion substrates from degradation and aggregation, facilitators of their cognate substrate secretion or both. FlgN has been previously shown to be a TTS chaperone for the hook-associated proteins FlgK and FlgL (FlgKL), and a translational regulator of the anti-σ28 factor FlgM. Protein stability assays indicate that a flgN mutation leads to a dramatic decrease in the half-life of intracellular FlgK. However, using gene reporter fusions to flgK we show that a flgN mutation does not affect the translation of a flgK–lacZ fusion. Quantification of FlgM protein levels showed that FlgKL inhibit the positive regulation on flgM translation by FlgN when secretion of FlgKL is inhibited. Suppressors of the motility-defective phenotype of a flgN mutant were isolated and mapped to the clpXP and fliDST loci. Overexpression of flgKL on a plasmid also suppressed the motility defect of a flgN null mutant. These results suggest that FlgN is not required for secretion of FlgKL and that FlgN typifies a class of TTS chaperones that allows for the minimal amount of their substrates expression required in the assembly process by protecting the substrate from proteolysis. Our data leads us to propose a model in which the interaction between FlgN and FlgK or FlgL is a sensing mechanism to determine the stage of flagellar assembly. Furthermore, the interaction between FlgN and FlgK or FlgL inhibits the translational regulation of flgM via FlgN in response to the stage of flagellar assembly.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature structural biology 8 (2001), S. 96-97 
    ISSN: 1072-8368
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] Physical movement is an incredible evolutionary achievement. Even tiny bacteria such as Escherichia coli and Salmonella can propel themselves through liquid environments and on surfaces by the rotation of attached helical appendages called flagella. The case of the bacterial flagellum might seem at ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1072-8368
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] The interaction between the flagellum specific sigma factor, σ28, and its inhibitor, FlgM, was examined using multidimensional heteronuclear NMR. Here we observe that free FlgM is mostly unfolded, but about 50% of the residues become structured when bound to σ28. Our analysis ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-12-19
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...