ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 221 (1969), S. 345-347 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] But the situation may be quite different from this. Habing and Pottasch7 have pointed out that the electron density of 0.1 cm?3 that has been widely used in calculating pulsar distances is very poorly established, and suggest that perhaps the problem should be turned around so that one first tries ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5117
    Keywords: mercury ; methyl mercury ; speciation and sediment-water partitioning ; rivers and lakes ; dissolved and suspended matter ; seasonal and site-specific variations ; biogeochemistry ; pollution ; bioavailability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Seasonal and regional variations in the speciation, sediment-water partitioning, and dynamics of mercury (Hg) were studied at selected sites along the Hg-polluted Wabigoon River, and at unpolluted headwater and tributary sites, during April–September, 1979. ‘Dissolved’ and ‘particulate’ forms of Hg in the water were separated by continuous-flow centrifugation in the field. The Hg and other pollutants such as wood chips and salt had been discharged from a chlor-alkali plant and paper mill at Dryden, Ontario. Concentrations and loadings of particulate methyl mercury (CH3Hg+) and total particulate Hg (and loadings of total ‘dissolved’ Hg) were greatest during the spring flood (April-May) owing to accelerated resuspension and transport of sediments. Concentrations of ‘dissolved’ CH3Hg+, however, were highest in the summer (July–September), probably reflecting stimulation of microbial methylating activity by elevated temperatures, together with factors such as reduced levels of metal-scavenging particulates and minimal dilution by runoff. Total dissolved Hg concentrations were relatively high in September at polluted sites only, possibly because of desorption from sediments due to elevated concentrations of Cl− ions. Loadings of dissolved CH3Hg+ tended to be high in the summer but were generally depressed (suggesting sorption by suspended particles) during the major spring-flood episode in May. During July–August dissolved CH3Hg+ was a function of total dissolved Hg, suggesting rapid biomethylation of desorbed inorganic Hg; but in general dissolved and suspended CH3Hg+ levels depended on environmental variables and were unrelated to total Hg concentrations. In the summer only, total dissolved Hg was a function of dissolved Cl−. Hg species in particulates were associated with sulfides, hydrated Fe and Mn oxides, organic matter (notably high molecular weight humic and humic-Fe components), and selenium (Se); but CH3Hg+ and total Hg differed in their specific preferences for binding agents, implying that binding sites discriminate between CH3Hg+ and Hg2+ ions. CH3Hg+ was associated with sulfide and (in the spring only) with Fe oxides, whereas total Hg was associated with organic matter and Se and with DTPA- and NaOH-extractable Fe in the spring but with Mn oxide and NaOH-extractable organics in the summer. Sulfides were most abundant in May, indicating that they were eroded from bottom sediments, but Fe and Mn oxides were most abundant in the summer, probably owing to activities of filamentous iron bacteria and other micro-organisms. Particulate Hg was 98–100% nonextractable by mild solvents such as Ca acetate, CaCl2, dilute acetic acid, and (at polluted sites only) DTPA solutions, suggesting that the particulate Hg mobilized in the spring may not be readily available to organisms; association with Se and high molecular weight humic matter also supports this hypothesis. Hg probably becomes more bio-available in the summer, as suggested by the upsurge in dissolved CH3Hg+ and total dissolved Hg levels, and by increases in the solubility of particulate Hg in acetic acid, DTPA, H2O2, and NaOH solutions, as well as an increase in the relative importance of lower molecular weight fractions of NaOH-extractable Hg (in September). Regional variations in Hg speciation and partitioning reflected a gradient in sediment composition from wood chips near Dryden to silt-clay mud further downstream. Hg in silt-clay mud relatively far (〉 35 km) downstream from the source of pollution or in unpolluted areas appeared to be more readily solubilized by Cl− ions or chelators such as DTPA, more readily methylated (as indicated by downstream increases in dissolved CH3Hg+ levels and CH3Hg+/total Hg ratios), and was to a greater degree organically bound (H2O2-extractable), and thus was probably more bio-available, than Hg in wood-chip deposits. Possible explanations include weaker binding of Hg by the mud, the more finely divided state of the mud, and improved microbial growth at lower concentrations of toxic pollutants. Owing to enrichment in sulfides and Fe oxides, resuspended wood-chip sediments were especially efficient scavengers of CH3Hg+. The results indicate that in any pollution abatement plan aimed at lowering the Hg levels in the biota of lakes fed by the Wabigoon River, immobilization, removal, or detoxification of dissolved as well as particulate forms of Hg in the river would probably have to be considered. Possibly, Hg species could be ‘scrubbed’ from the river water by increasing the suspended load and by sedimentation and treatment with Hg-binding agents in special receiving basins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5117
    Keywords: mercury ; methyl mercury ; speciation and sediment-water partitioning ; rivers and lakes ; dissolved and suspended matter ; seasonal and site-specific variations ; biogeochemistry ; pollution ; bioavailability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Seasonal and regional variations in the speciation, sediment-water partitioning, and dynamics of mercury (Hg) were studied at selected sites along the Hg-polluted Wabigoon River, and at unpolluted headwater and tributary sites, during April–September, 1979. ‘Dissolved’ and ‘particulate’ forms of Hg in the water were separated by continuous-flow centrifugation in the field. The Hg and other pollutants such as wood chips and salt had been discharged from a chlor-alkali plant and paper mill at Dryden, Ontario. Concentrations and loadings of particulate methyl mercury (CH3Hg+) and total particulate Hg (and loadings of total ‘dissolved’ Hg) were greatest during the spring flood (April-May) owing to accelerated resuspension and transport of sediments. Concentrations of ‘dissolved’ CH3Hg+, however, were highest in the summer (July–September), probably reflecting stimulation of microbial methylating activity by elevated temperatures, together with factors such as reduced levels of metal-scavenging particulates and minimal dilution by runoff. Total dissolved Hg concentrations were relatively high in September at polluted sites only, possibly because of desorption from sediments due to elevated concentrations of Cl− ions. Loadings of dissolved CH3Hg+ tended to be high in the summer but were generally depressed (suggesting sorption by suspended particles) during the major spring-flood episode in May. During July–August dissolved CH3Hg+ was a function of total dissolved Hg, suggesting rapid biomethylation of desorbed inorganic Hg; but in general dissolved and suspended CH3Hg+ levels depended on environmental variables and were unrelated to total Hg concentrations. In the summer only, total dissolved Hg was a function of dissolved Cl−. Hg species in particulates were associated with sulfides, hydrated Fe and Mn oxides, organic matter (notably high molecular weight humic and humic-Fe components), and selenium (Se); but CH3Hg+ and total Hg differed in their specific preferences for binding agents, implying that binding sites discriminate between CH3Hg+ and Hg2+ ions. CH3Hg+ was associated with sulfide and (in the spring only) with Fe oxides, whereas total Hg was associated with organic matter and Se and with DTPA- and NaOH-extractable Fe in the spring but with Mn oxide and NaOH-extractable organics in the summer. Sulfides were most abundant in May, indicating that they were eroded from bottom sediments, but Fe and Mn oxides were most abundant in the summer, probably owing to activities of filamentous iron bacteria and other micro-organisms. Particulate Hg was 98–100% nonextractable by mild solvents such as Ca acetate, CaCl2, dilute acetic acid, and (at polluted sites only) DTPA solutions, suggesting that the particulate Hg mobilized in the spring may not be readily available to organisms; association with Se and high molecular weight humic matter also supports this hypothesis. Hg probably becomes more bio-available in the summer, as suggested by the upsurge in dissolved CH3Hg+ and total dissolved Hg levels, and by increases in the solubility of particulate Hg in acetic acid, DTPA, H2O2, and NaOH solutions, as well as an increase in the relative importance of lower molecular weight fractions of NaOH-extractable Hg (in September). Regional variations in Hg speciation and partitioning reflected a gradient in sediment composition from wood chips near Dryden to silt-clay mud further downstream. Hg in silt-clay mud relatively far (〉 35 km) downstream from the source of pollution or in unpolluted areas appeared to be more readily solubilized by Cl− ions or chelators such as DTPA, more readily methylated (as indicated by downstream increases in dissolved CH3Hg+ levels and CH3Hg+/total Hg ratios), and was to a greater degree organically bound (H2O2-extractable), and thus was probably more bio-available, than Hg in wood-chip deposits. Possible explanations include weaker binding of Hg by the mud, the more finely divided state of the mud, and improved microbial growth at lower concentrations of toxic pollutants. Owing to enrichment in sulfides and Fe oxides, resuspended wood-chip sediments were especially efficient scavengers of CH3Hg+. The results indicate that in any pollution abatement plan aimed at lowering the Hg levels in the biota of lakes fed by the Wabigoon River, immobilization, removal, or detoxification of dissolved as well as particulate forms of Hg in the river would probably have to be considered. Possibly, Hg species could be ‘scrubbed’ from the river water by increasing the suspended load and by sedimentation and treatment with Hg-binding agents in special receiving basins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5117
    Keywords: mercury ; methyl mercury ; speciation and sediment-water partitioning ; rivers and lakes ; dissolved and suspended matter ; seasonal and site-specific variations ; biogeochemistry ; pollution ; bioavailability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Seasonal and regional variations in the speciation, sediment-water partitioning, and dynamics of mercury (Hg) were studied at selected sites along the Hg-polluted Wabigoon River, and at unpolluted headwater and tributary sites, during April–September, 1979. ‘Dissolved’ and ‘particulate’ forms of Hg in the water were separated by continuous-flow centrifugation in the field. The Hg and other pollutants such as wood chips and salt had been discharged from a chlor-alkali plant and paper mill at Dryden, Ontario. Concentrations and loadings of particulate methyl mercury (CH3Hg+) and total particulate Hg (and loadings of total ‘dissolved’ Hg) were greatest during the spring flood (April-May) owing to accelerated resuspension and transport of sediments. Concentrations of ‘dissolved’ CH3Hg+, however, were highest in the summer (July–September), probably reflecting stimulation of microbial methylating activity by elevated temperatures, together with factors such as reduced levels of metal-scavenging particulates and minimal dilution by runoff. Total dissolved Hg concentrations were relatively high in September at polluted sites only, possibly because of desorption from sediments due to elevated concentrations of Cl− ions. Loadings of dissolved CH3Hg+ tended to be high in the summer but were generally depressed (suggesting sorption by suspended particles) during the major spring-flood episode in May. During July–August dissolved CH3Hg+ was a function of total dissolved Hg, suggesting rapid biomethylation of desorbed inorganic Hg; but in general dissolved and suspended CH3Hg+ levels depended on environmental variables and were unrelated to total Hg concentrations. In the summer only, total dissolved Hg was a function of dissolved Cl−. Hg species in particulates were associated with sulfides, hydrated Fe and Mn oxides, organic matter (notably high molecular weight humic and humic-Fe components), and selenium (Se); but CH3Hg+ and total Hg differed in their specific preferences for binding agents, implying that binding sites discriminate between CH3Hg+ and Hg2+ ions. CH3Hg+ was associated with sulfide and (in the spring only) with Fe oxides, whereas total Hg was associated with organic matter and Se and with DTPA- and NaOH-extractable Fe in the spring but with Mn oxide and NaOH-extractable organics in the summer. Sulfides were most abundant in May, indicating that they were eroded from bottom sediments, but Fe and Mn oxides were most abundant in the summer, probably owing to activities of filamentous iron bacteria and other micro-organisms. Particulate Hg was 98–100% nonextractable by mild solvents such as Ca acetate, CaCl2, dilute acetic acid, and (at polluted sites only) DTPA solutions, suggesting that the particulate Hg mobilized in the spring may not be readily available to organisms; association with Se and high molecular weight humic matter also supports this hypothesis. Hg probably becomes more bio-available in the summer, as suggested by the upsurge in dissolved CH3Hg+ and total dissolved Hg levels, and by increases in the solubility of particulate Hg in acetic acid, DTPA, H2O2, and NaOH solutions, as well as an increase in the relative importance of lower molecular weight fractions of NaOH-extractable Hg (in September). Regional variations in Hg speciation and partitioning reflected a gradient in sediment composition from wood chips near Dryden to silt-clay mud further downstream. Hg in silt-clay mud relatively far (〉 35 km) downstream from the source of pollution or in unpolluted areas appeared to be more readily solubilized by Cl− ions or chelators such as DTPA, more readily methylated (as indicated by downstream increases in dissolved CH3Hg+ levels and CH3Hg+/total Hg ratios), and was to a greater degree organically bound (H2O2-extractable), and thus was probably more bio-available, than Hg in wood-chip deposits. Possible explanations include weaker binding of Hg by the mud, the more finely divided state of the mud, and improved microbial growth at lower concentrations of toxic pollutants. Owing to enrichment in sulfides and Fe oxides, resuspended wood-chip sediments were especially efficient scavengers of CH3Hg+. The results indicate that in any pollution abatement plan aimed at lowering the Hg levels in the biota of lakes fed by the Wabigoon River, immobilization, removal, or detoxification of dissolved as well as particulate forms of Hg in the river would probably have to be considered. Possibly, Hg species could be ‘scrubbed’ from the river water by increasing the suspended load and by sedimentation and treatment with Hg-binding agents in special receiving basins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 27 (1993), S. 667-676 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: One hundred-micron-thick threads of 40-kDa copolymer polylactide : polyglycolide (PLGA) in a 50 : 50 molar ratio in bone chambers were implanted in rabbit tibias. Weekly intravital microscopic observations were used to assess trabecular ingrowth and PLGA absorption, processes referred to as incorporation. Nineteen rabbits were observed from the 3rd (W3) to the 10th or 12th (W10/W12) week postimplantation. Analysis of digitally processed video images obtained weekly showed that PLGA absorption was completed in about 8-10 weeks and trabecular ingrowth delayed to about 1 week slower than its control value. Four of the bone chambers showed PLGA unraveled by week 3, no trabecular ingrowth, and significantly reduced neovascularization. No such apparent inhibitory effects were observed in bone chambers that displayed PLGA absorption. No causal link could be established between the rate of neoosteogenesis and the rate of PLGA absorption, but it was clear that incorporation slowed and rapid degradation inhibited bone regeneration. It was concluded that copolymer synthesis and postsynthesis processing must result in a synthetic with a predictable micro- and macro-molecular structure before one can predict its incorporability in a given reconstruction or fixation site. © 1993 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 35 (1997), S. 249-254 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Osseous defects and fractures may require supplimentation to support and promote healing. Bioglass® (BG) may be a useful therapeutic for these conditions. Therefore, we executed a study to determine whether particulate BG could promote healing of 20-mm unilateral ostectomies in the radius of rabbits. Ostectomies were either treated with BG or remained untreated in the control (CTL) group. At 4 and 8 weeks post-treatment, ostectomies were assessed histomorphometrically and biomechanically. New bone formation was more intense contiguous to the host bone for both BG and CTL than centrally, yet BG animals displayed active mineralization throughout the ostectomy. The amount of bone within BG-filled defects was greater than CTLs at 4 weeks, whereas, at 8 weeks there was no difference. Biomechanically, the BG-treated limbs required more torque to break than did CTL limbs at 4 weeks; however differences were not significantly different. By 8 weeks, the BG-treated and CTLs, had comparable strength. Bioglass® may be a useful therapy to produce the early phase of osseous repair. However, improvements in handling properties of the particles will be needed to enhance efficacy. © 1997 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 28 (1994), S. 1139-1147 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: In the current investigation, we report osseous regeneration in critical-size rat calvarial defects using recombinant human bone morphogenetic protein-2(rhBMP-) and novel delivery systems based on biomaterials. The novel systems combine rhBMP- with dry powder microparticles of poly(D, L-lactide-co-glycolide) (PLGA). The mixture of rhBMP- with PLGA microparticles is added to an aqueous solution of biopolymer to yield a semisolid paste. The biopolymers tested include autologous blood clot, hydroxypropyl methylcellulose, and sodium alginate cross-linked with calcium ion. Insoluble collageneous bone matrix was also studied as a control. Test articles were made at 0-, 10-, and 30-µg doses of rhBMP- and implanted in 8-mm-diameter rat calvarial defects (which will not heal if left untreated). The animals were examined 21 days after implantation by radiography, radiomorphometry, histology, and histomorphometry. All tested materials containing rhBMP- restored radiopacity and normal contouring to the calvarial defects. Samples without added rhBMP- yielded only soft tissue within the defects. Histology showed restoration of inner and outer bone tables plus marrow constituents. The PLGA microparticles were significantly resorbed at the 21-day time point. Although small differences between delivery systems were evident at 0- and 10-µg rhBMP- doses, all test articles performed essentially equivalently at the 30-µg dose. Thus, novel delivery systems for rhBMP- offer the promise of combining the intrinsic bioactivity of the osteoinductive protein with pharmaceutically acceptable biomaterials. © 1994 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0268-2605
    Keywords: Mercury bioaccumulation ; crayfish ; water ; food ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: An in situ caged crayfish experiment was conducted in the Wabigoon River System, Ontario, Canada to determine the relative importance of food and water pathways for mercury accumulation in crayfish. Two groups of 160 crayfish were suspended in the water column; one at an ucontaminated site, the other at a location with highly elevated total mercury and methylmercury levels in water. Crayfish at each site were divided into two groups. Crayfish were fed either sucker flesh obtained from an uncontaminated lake (low mercury diet) or walleye flesh from contaminated Clay Lake, Ontario, Canada (high mercury diet). After 10 weeks crayfish at both sites fed the high mercury diet had over 20 times mercury accumulation compared to crayfish on the low mercury diet. There was no statistical effects due to sharply elevated water concentrations of total and methylmercury on mercury bodyburdens. This indicated that food was the dominant pathway for mercury accumulation in crayfish.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-10-14
    Description: Progress is being made in the development of an Ion Source Test Facility (ISTF) by D-Pace Inc. in collaboration with Buckley Systems Ltd. in Auckland, NZ. The first phase of the ISTF is to be commissioned in October 2015 with the second phase being commissioned in March 2016. The facility will primarily be used for the development and the commercialization of ion sources. It will also be used to characterize and further develop various D-Pace Inc. beam diagnostic devices.
    Print ISSN: 0034-6748
    Electronic ISSN: 1089-7623
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-06-26
    Description: The timing of life-history events has a strong impact on ecosystems. Now, analysis of the phenology of temperate forests in the eastern US indicates that in the case of an earlier spring and a later autumn, carbon uptake (photosynthesis) increases considerably more than carbon release (respiration). Nature Climate Change 4 598 doi: 10.1038/nclimate2253
    Print ISSN: 1758-678X
    Electronic ISSN: 1758-6798
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...