ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Copenhagen : Munksgaard International Publishers
    Physiologia plantarum 113 (2001), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The interaction between chloroplast fructose-1,6-bisphosphatase (FBPase) and thioredoxin (Trx) f, two plant proteins involved in the Benson-Calvin cycle, is mainly of an electrostatic nature [Hermoso et al. (1996) Plant Mol Biol 30: 455–465; Reche et al. (1997) Physiol Plant 101: 463–470; Sahrawy et al. (1997) J Mol Biol 269: 623–630; Hermoso et al. (1999) Physiol Plant 105: 756–762], possibly involving carboxyl groups of the enzyme and amino groups of Trx f. We carried out the covalent stabilization of that ionic complex, for the purpose of studying the interaction between both proteins and the factors that influence it. We have used 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide, a reagent able to cross-link carboxyl and amino groups, which allows the formation of covalent bonds between the groups that, in solution, form ionic bonds. A stable functional complex between both proteins was formed. The efficiency in the formation of that complex depends on the redox state of Trx f, ionic strength and pH, showing a strong correlation with the Trx f-dependent enzyme activity. The complex also retains enzyme activity. This suggests that the formation of the covalent complex requires the previous stabilization of a specific functional ionic complex between both proteins, and that in this functional complex carboxyl groups of the enzyme and primary amines of Trx f are involved. This complex is not stable in a tetrameric structure of the enzyme. We could also detect covalent aggregates of FBPase subunits, which indicates the implication of ionic interactions in the stabilization of the tetrameric structure of the enzyme; besides, as molecular filtration experiments and electrophoresis suggest, hydrophobic forces would also be implicated in the enzyme structure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 84 (1992), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Upon continuous illumination of dark-grown spinach (Spinacia oleracea L. cv. Winter Giant) seedlings, the thioredoxin f (Td f) content (ELISA) showed a steep rise, which can be evaluated after 3 and 36 h illumination as 3 times and 10 times the dark value, respectively. These figures correspond to 0.03% and 0.1% of total soluble protein, which means a higher biosynthetic rate for Td f compared to the average of total proteins in the earlier steps of plant development. After 40-50 h light the Td f level reached its highest value which remained stable for an additional 40 h and then decreased. Pulse-chase in vivo experiments with [35S]-methionine also showed this sharp increase of Td f in the dark-light transition. From the pattern of decay of [35S]-labelled Td f, a half-life of 7 h was determined for this chloroplast protein. In vitro translation experiments with poly(A)-mRNA isolated from illuminated young spinach seedlings, coupled to a wheat-germ synthesizing system, showed the appearance of a labelled fraction of ca 19 kDa molecular mass, recognizable by a specific Td f antiserum. When intact spinach chloroplasts were added to the translation assay medium, and then illuminated, the 19 kDa band disappeared, with a parallel increase of an internalized 13 kDa labelled polypeptide, also recognized by the Td f antiserum. These results are good evidence for a nuclear-coded synthesis of a Td f precursor, which travels through the chloroplast envelope, leaving the functional protein inside the organelle after the loss of a 6 kDa transit peptide.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: We previously demonstrated that a cluster in the available Asn-170Glu region of pea chloroplast fructose-1,6-bisphosphatase (FBPase) could be involved in its interaction with the physiological modulator thioredoxin (Trx). Using as template a cDNA coding for pea chloroplast FBPase, a DNA insert coding for a 19 amino acid fragment (Pro-167Gly) was amplified by PCR. After insertion in the pGEX-4T vector-1, it was expressed in Escherichia coli as a fusion protein (GST-19) with the vector-coded glutathione transferase (GST). This protein appears in the supernatant of cell lysates, and was purified to homogeneity. After thrombin digestion, the 19 amino acid insert was isolated as a polypeptide which displayed a positive reaction against pea chloroplast FBPase antibodies. GST-19 linked to glutathione-Sepharose beads, but not the GST, strongly interacts with pea Trx f, suggesting that this binding depends on the 19 amino acid insert. ELISA and Western blot experiments also demonstrate the existence of a GST-19-Trx f interaction, as well as a negligible quantity of Trx f bound by the vector-coded GST. Putative competitive inhibition assays of FBPase activity carried out in the presence of increasing concentrations of the 19 amino acid insert do not demonstrate any enzyme inhibition. On the contrary, this protein fragment enhances the enzyme activity proportionally to its concentration in the assay mixture. This indicates that the FBPase-Trx f binding promotes some type of structural modification of the Trx molecule, or of the FBPase-Trx docking site, thus facilitating the reductive modulation of FBPase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Fructose-1,6-bisphosphatase (FBPase; EC 3.1.3.11) binds its putative physiological activator thioredoxin f (Trxf) at pH 7.9, the pH in the stroma of the illuminated chloroplast. Since Trx m, described as specific in NADP+-malate dehydrogenase (NADPMDH) activation, appears in pea (Pisum sativum L.) also to be functional in FBPase modulation, we have here analyzed the effect of pH and the redox status of the chloroplast stroma in the pea FBPase binding of homologous Trx f and m. Both pea Trx were strongly bound by purified FBPase when they were preincubated at pH 7.9 with 2.5 mM dithiothreitol (DTT), but not when the reductant was omitted. As occurs with Trx f the Trx m/FBPase ratio of the complex was 4, but this was only observed with a Trx m/FBPase concentration ratio 〉 10 in the preincubation mixture. The FBPase-Trx m binding disappeared in the presence of 100 mM NaCl, even with 2.5 mM DTT at pH 7.9, with a concomitant appearance of different aggregation states of the FBPase subunit. A similar FBPase-Trx m complex was detected in the stromal solution when pea chloroplasts were lysed at pH 7.9 in the presence of DTT. No interaction was observed between NADP-MDH and Trx f or m, either in the presence or in the absence of DTT. Pea FBPase showed sigmoidal activation kinetics with pea Trx m, and an S0.5 of 133 nM versus 6.6 nM with pea Trx f. About 10-fold higher concentration of the former than that of the latter was required for obtaining maximum activity; however, the Vmax with Trx f was only 2-fold higher than that with Trx m. We conclude that pea FBPase binds and is activated by the homologous Trx m, even though to a lesser extent than with Trx f. We also deduce that in the light the conditions in the chloroplast stroma are optimal for forming an FBPase-Trx complex.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5079
    Keywords: ELISA ; fructose-1,6-bisphosphatase ; photosynthesis ; quantitative determination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract An immunological method for quantitative determination of photosynthetic fructose-1,6-bisphosphatase in crude extracts of leaves is proposed. It is based on the ELISA technique, and offers two modifications. A non-competitive technique has a higher sensitivity and is the right option for samples of low fructose-1,6-bisphosphatase content. However, this method is not sufficiently specific when the total protein is higher than 5 μg/cm3; so, despite its lower sensitivity, in these circumstances a competitive technique is more suitable. Thus photosynthetic fructose-1,6-bisphosphatase can be measured without interferences from the gluconeogenic cytosolic enzyme of the photosynthetic cell or from a non-specific phosphatase present in the chloroplast.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5028
    Keywords: pea ; fructose-1,6-bisphosphatase ; thioredoxin ; redox regulation ; protein-protein interaction ; anchor point
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract When we compare the primary structures of the six chloroplast fructose-1,6-bisphosphatases (FBPase) so far sequenced, the existence of a poorly conserved fragment in the region just preceding the redox regulatory cysteines cluster can be observed. This region is a good candidate for binding of FBPase to its physiological modulator thioredoxin (Td), as this association shows clear differences between species. Using a cDNA clone for pea chloroplast FBPase as template, we have amplified by PCR a DNA insert coding for a 19 amino acid fragment (149Pro-167Gly), which was expressed in pGEMEX-1 as a fusion protein. This protein strongly interacts with pea Td m, as shown by ELISA and Superose 12 gel filtration, depending on pH of the medium. Preliminary assays have shown inhibition of FBPase activity in the presence of specific IgG against the 19 amino acid insert. Surprisingly the fusion protein enhances the FBPase activation in competitive inhibition experiments carried out with FBPase and Td. These results show the fundamental role played by this domain in FBPase-Td binding, not only as docking point for Td, but also by inducing some structural modification in the Td molecule. Taking as model the structural data recently published for spinach photosynthetic FBPase [29], this sequence from a tertiary and quaternary structural point of view appears available for rearrangement.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...