ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 9 (1991), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 13 (1995), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Phase relations and mineral chemistry for garnet (Grt), orthopyroxene (Opx), sapphirine (Spr), water-undersaturated cordierite (Crd), osumilite (Osu), sillimanite (Sil), K-feldspar (Kfs), quartz (Qtz) and a water-undersaturated liquid (Liq) have been determined experimentally in the system KFMASH (K2O-FeO-MgO-Al2O3-SiO2-H2O) under low PH2O and fO2 conditions. Four compositions have been studied with 100 [Mg/(Mg + Fe)] ranging from 65.6 to 89.7. Based on our experimental data, a P-T grid is derived for the KFMASH system in the presence of quartz, orthopyroxene and liquid. Osumilite has been found in various mineral assemblages from 950 to 1100°C and 7.5 to 11 kbar. In the temperature range 1000-1100°C, the pair Os-Grt is stable over a pressure range of about 3kbar. The divariant reaction Os + Opx = Grt + Kfs + Qtz runs to the right with increasing pressure. Because osumilite is the most magnesian phase it is restricted to Mg-rich compositions at high pressure. The reaction defining the upper pressure stability limit of Os-Grt is located around 11 kbar with a nearly flat dP/dT slope over the temperature range 950–100°C. Over the entire temperature range investigated osumilite is not stable beyond 12 kbar. The data imply a restricted pressure range between 11 and 12 kbar for the stability of the assemblage Os-Opx-Sil-Kfs-Qtz. At 1050°C and above, osumilite occurs in various mineral assemblages together with the high-T pair Spr-Qtz.When coexisting with garnet, orthopyroxene or sapphirine, osumilite is always the most magnesian phase. At 1050 and 1100°C, liquid is invariably the most Fe-rich phase in the run product.Our data support a theoretical P-T grid for the KFMAS system in which osumilite is stable outside the field of the high-T assemblage Spr-Qtz. Moreover, our grid indicates that Os-Opx-Sil-Kfs-Qtz has a more restricted pressure and compositional stability domain than Os-Grt, in agreement with natural occurrences. Osumilite is stable over a large pressure range, such that in Mg-rich rocks, and at high temperature, it can occur at any depth in normal thickness continental crust.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 9 (1991), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Mafic garnet-bearing granulites from Sostrene Island, 150 km southwest of Davis Station on the coast of Prydz Bay, East Antarctica, exhibit two-stage symplectic coronas on garnet, formed after peak metamorphic conditions (M1). An outer corona of Opx (Mg66) + Pl (An94–97) + minor Hbl mantles a finer-grained inner corona of Opx (Mg67) + Pl (An95–96) + Spl (Mg36). Both symplectites contain minor ilmenite–magnetite intergrowths. The finer-grained symplectite also occurs along a fracture cleavage in the garnet.The outer corona originated during a second metamorphic event (M2) via the reaction Grt + Cpx (Hbl) + SiO2= Opx + Pl (1), whereas the inner corona formed later in response to decompression and minor deformation, resulting in the fracture cleavage in the garnet, according to the reaction Grt = Opx + Pl + Spl (2). The grossular content of the garent (XGrs= 0.168) is almost exactly that which is required for the stoichiometric breakdown by reaction (2) (calculated XGrs= 0.167). The mafic rocks are silica undersaturated, and the SiO2 for reaction (1) was most probably derived externally from the surrounding felsic gneisses.Preferred P–T estimates for M1 based on garnet core (Prp40Alm42Grs17Sps1)–matrix Opx–Cpx–Hbl pairs are c. 10 kbar at 980°C. The fine-grained symplectite formed post-peak M2 at c. 7 kbar and 850°C. The enclosing felsic gneisses yield pressure estimates of between 5 and 7 kbar, which compare with conditions of c. 6 kbar and 775°C in the nearby Bolingen Islands. These lower P–T estimates are considered to be representative of the widespread 1100-Ma metamorphic event recognized in outcrops along the Prydz Bay coast. The high-P, high-T estimates derived from the garnet relics provide evidence for an earlier, possibly Archaean, high-grade metamorphic event.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 9 (1991), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Calc-silicate granulites from the Bolingen Islands, Prydz Bay, East Antarctica, exhibit a sequence of reaction textures that have been used to elucidate their retrograde P–T path. The highest temperature recorded in the calc-silicates is represented by the wollastonite- and scapolite-bearing assemblages which yield at least 760°C at 6 kbar based on experimental results. The calc-silicates have partially re-equilibrated at lower temperatures (down to 450°C) as evidenced by the successive reactions: (1) wollastonite + scapolite + calcite = garnet + CO2, (2) wollastonite + CO2= calcite + quartz, (3) wollastonite + plagioclase = garnet + quartz, (4) scapolite = plagioclase + calcite + quartz, (5) garnet + CO2+ H2O = epidote + calcite + quartz, and (6) clinopyroxene + CO2+ H2O = tremolite + calcite + quartz.The reaction sequence observed indicates that aCO2 was relatively low in the wollastonite-bearing rocks during peak metamorphic conditions, and may have been further lowered by local infiltration of H2O from the surrounding migmatitic gneisses on cooling. Fluid activities in the Bolingen calc-silicates were probably locally variable during the granulite facies metamorphism, and large-scale CO2 advection did not occur.A retrograde P–T path, from the sillimanite stability field (c. 760°C at 6 kbar) into the andalusite stability field (c. 450°C at 〈3 kbar), is suggested by the occurrence of secondary andalusite in an adjacent cordierite–sillimanite gneiss in which sillimanite occurs as inclusions in cordierite.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 9 (1991), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Magnesian metapelites of probable Archaean age from Forefinger Point, SW Enderby Land, East Antarctica, contain very-high-temperature granulite facies mineral assemblages, which include orthopyroxene (8–9.5 wt% Al2O3)–sillimanite ± garnet ± quartz ± K-feldspar, that formed at 10 ± 1.5 kbar and 950 ± 50°C. These assemblages are overprinted by symplectite and corona reaction textures involving sapphirine, orthopyroxene (6–7 wt% Al2O3), cordierite and sometimes spinel at the expense of porphyroblastic garnet or earlier orthopyroxene–sillimanite. These textures mainly pre-date the development of coarse biotite at the expense of initial mesoperthite, and the subsequent formation of orthopyroxene (4–6 wt% Al2O3)–cordierite–plagioclase rinds on late biotite.The early reaction textures indicate a period of near-isothermal decompression at temperatures above 900°C. Decompression from 10 ± 1.5 kbar to 7–8 kbar was succeeded by biotite formation at significantly lower temperatures (800–850°C) and further decompression to 4.5 ± 1 kbar at 700–800°C.The later parts of this P–T evolution can be ascribed to the overprinting and reworking of the Forefinger Point granulites by the Late-Proterozoic (c. 1000 Ma) Rayner Complex metamorphism, but the age and timing of the early high-temperature decompression is not known. It is speculated that this initial decompression is of Archaean age and therefore records thinning of the crust of the Napier Complex following crustal thickening by tectonic or magmatic mechanisms and preceding the generally wellpreserved post-deformational near-isobaric cooling history of this terrain.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Foliated garnet-bearing amphibolites occur within the West Bore Shear Zone, cutting through granulite facies gneisses of the Strangways Metamorphic Complex. In the amphibolites, large euhedral garnet (up to 3 cm) occurs within fine-grained recrystallized leucocratic diffusion haloes of plagioclase–quartz. The garnet and their haloes include a well-developed vertical foliation, also present in the matrix. This foliation is the same as that cutting through the unconformably overlying Neoproterozoic Heavitree Quartzite. The textures indicate syn- to late kinematic growth of the amphibolite facies mineral assemblages.All mineral assemblages record an arrested prograde reaction history. Noteworthy is the growth of garnet at the expense of hornblende and plagioclase, and the breakdown of staurolite–hornblende to give plagioclase–gedrite. These dehydration reactions indicate increasing P–T  conditions during metamorphism, and suggest heating towards the end of a period of intense deformation. Temperature estimates for the garnet–amphibolite and related staurolite–hornblende assemblages from the shear zone are about 600 °C. Pressure is estimated at about 5 kbar.An Sm–Nd isochron gives an age of 381±7 Ma for the peak metamorphism and associated deformation. This age determination confirms that amphibolite facies conditions prevailed during shear zone development within the Strangways Metamorphic Complex during the Alice Springs Orogeny. These temperature conditions are significantly higher than those expected at this depth assuming a normal geothermal gradient. The Alice Springs Orogeny was associated with significant crustal thickening, allowing exhumation of the granulite facies, Palaeoproterozoic, lower crust. Along-strike variations of the tectonic style suggest a larger amount of crustal shortening in the eastern part of the Alice Springs Orogeny.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Al-Mg granulites, with cordierite, garnet, sapphirine, orthopyroxene, sillimanite, spinel, phlogopite, K-feldspar, plagioclase and variable quartz from Ihouhaouene (In Ouzzal, Algeria), display a range of decompression textures involving the breakdown of orthopyroxene and sillimanite, and of garnet. The succession of parageneses suggests that the P–T–t evolution corresponds to decompression with cooling from peak conditions of about 950°C and 10 kbar. This decompression path is obtained from the paragenetic analysis in the FMAS system. However, according to current KFMASH grids, this P–T–t evolution should take place outside the stability field of phlogopite+quartz; yet this assemblage is probably stable during most of the P-T evolution, notably during peak metamorphism. This discrepancy is interpreted as the effect of the high content of F in phlogopite which should shift its stability limit towards higher temperature. The consequences of this shift on the phase relationships in the KFeMASH system are investigated and it is concluded that a topological inversion could exist in the F-bearing system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 5 (1987), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Considering the minerals cordierite (Cd), sapphirine (Sa), hypersthene (Hy), garnet (Ga), spinel (Sp), sillimanite (Si) and corundum (Co) in the system FeO-MgO-Al2O3-SiO2 (FMAS), the stable invariant points are [Co], [Ga], [Cd] and [Sa]. Constraints imposed by experimental data for the system MAS indicate that under low PH2o conditions the invariant points occur at high temperature (〉 900° C) and intermediate pressure (7-10 kbar). This temperature is higher than that commonly advocated for granulite facies metamorphism. In granulites Fe-Mg exchange geothermometers may yield temperatures of 100–150° C below peak metamorphic conditions and evidence for peak temperatures is best preserved by relict high-temperature assemblages and by Al-rich cores in orthopyroxene. Application of the FMAS grid to some well-documented granulite occurrences introduces important constraints on their P-T histories. Rocks of different bulk compositions, occurring in close proximity in the field, may record distinct segments of their P-T paths. This applies particularly to rocks with evidence for reaction in the form of coronas, symplectites and zoned minerals. Consideration of curved reaction boundaries and XMs isopleths may explain apparently contradictory results for the stability of cordierite obtained from low-temperature experiments and thermochemical calculations on the one hand and hightemperature experimental data on the other.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 20 (2002), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Cordierite H2O and CO2 volatile saturation surfaces derived from recent experimental studies are presented for P–T conditions relevant to high-grade metamorphism and used to evaluate fluid conditions attending partial melting and granulite formation. The volatile saturation surfaces and saturation isopleths for both H2O and CO2 in cordierite are strongly pressure dependent. In contrast, the uptake of H2O by cordierite in equilibrium with melts formed through biotite dehydration melting, controlled by the distribution of H2O between granitic melt and cordierite, Dw[Dw = wt% H2O (melt)/wt% H2O(Crd)], is mainly temperature dependent. Dw = 2.5–6.0 for the H2O contents (0.4–1.6 wt percentage) typical of cordierite formed through biotite dehydration melting at 3–7 kbar and 725–900 °C. This range in Dw causes a 15–30% relative decrease in the total wt% of melt produced from pelites. Cordierite in S-type granites are H2O-rich (1.3–1.9 wt%) and close to or saturated in total volatiles, signifying equilibration with crystallizing melts that achieved saturation in H2O. In contrast, the lower H2O contents (0.6–1.2 wt percentage) preserved in cordierite from many granulite and contact migmatite terranes are consistent with fluid-absent conditions during anatexis. In several cases, including the Cooma migmatites and Broken Hill granulites, the cordierite volatile compositions yield aH2O values (0.15–0.4) and melt H2O contents (2.2–4.4 wt%) compatible with model dehydration melting reactions. In contrast, H2O leakage is indicated for cordierite from Prydz Bay, Antarctica that preserve H2O contents (0.5–0.3 wt%) which are significantly less than those required (1.0–0.8 wt%) for equilibrium with melt at conditions of 6 kbar and 860 °C. The CO2 contents of cordierite in migmatites range from negligible (〈 0.1 wt%) to high (0.5–1.0 wt%), and bear no simple relationship to preserved cordierite H2O contents and aH2O. In most cases the cordierite volatile contents yield total calculated fluid activities (aH2O + aCO2) that are significantly less than those required for fluid saturation at the P–T conditions of their formation. Whether this reflects fluid absence, dilution of H2O and CO2 by other components, or leakage of H2O from cordierite is an issue that must be evaluated on a case-by-case basis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...