ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Language
  • 1
    Keywords: Earth sciences. ; Geography. ; Physical geography. ; Earth and Environmental Sciences. ; Earth System Sciences. ; Earth Sciences.
    Description / Table of Contents: Chapter 1. Introduction -- Chapter 2. Discovering Climate -- Chapter 3. The Language of Science -- Chapter 4. Applying Mathematics to Problems -- Chapter 5. Geologic Time -- Chapter 6. Putting Numbers on Geologic Ages -- Chapter 7. Documenting Past Climate Change -- Chapter 8. The Nature of Energy Received From the Sun – The Analogies with Water Waves and Sound -- Chapter 9. The Nature of Energy Received From the Sun---Figuring Out What Light Really Is -- Chapter 10. Exploring the Electromagnetic Spectrum -- Chapter 11. The Origins of Climate Science---The Idea Of Energy Balance -- Chapter 12. The Climate System -- Chapter 13. What’s At The Bottom of Alice’s Rabbit Hole -- Chapter 14. Energy from the Sun---Long-Term Variations -- Chapter 15. Solar Variability and Cosmic Rays -- Chapter 16. Albedo -- Chapter 17. Air -- Chapter 18. HOH---The Keystone Of Earth’s Climate -- Chapter 19. The Atmosphere -- Chapter 20. Oxygen and Ozone---Products and Protectors of Life -- Chapter 21. Water Vapor---The Major Greenhouse Gas -- Chapter 22. Carbon Dioxide -- Chapter 23. Other Greenhouse Gases -- Chapter 24. The Earth Is a Sphere and Rotates -- Chapter 25. The Coriolis Effect -- Chapter 26. The Circulation of Earth’s Atmosphere -- Chapter 27. The Circulation of Earth’s Oceans -- Chapter 28. The Biological Interactions -- Chapter 29. Sea Level -- Chapter 30. Global Climate Change---The Geologically Immediate Past -- Chapter 31. Human Impacts on the Environment and Climate -- Chapter 32. Predictions of the Future of Humanity -- Chapter 33. Is there an Analog for the Future Climate -- Chapter 34. The Instrumental Temperature Record -- Chapter 35. The Changing Climate of the Polar Regions -- Chapter 36. Global, Regional and Local Effects of Our Changing Climate -- Chapter 37. Final Thoughts.
    Abstract: This book is a thorough introduction to climate science and global change. The author is a geologist who has spent much of his life investigating the climate of Earth from a time when it was warm and dinosaurs roamed the land, to today's changing climate. Bill Hay takes you on a journey to understand how the climate system works. He explores how humans are unintentionally conducting a grand uncontrolled experiment which is leading to unanticipated changes. We follow the twisting path of seemingly unrelated discoveries in physics, chemistry, biology, geology, and even mathematics to learn how they led to our present knowledge of how our planet works. He explains why the weather is becoming increasingly chaotic as our planet warms at a rate far faster than at any time in its geologic past. He speculates on possible future outcomes, and suggests that nature itself may make some unexpected course corrections. Although the book is written for the layman with little knowledge of science or mathematics, it includes information from many diverse fields to provide even those actively working in the field of climatology with a broader view of this developing drama. Experimenting on a Small Planet is a must read for anyone having more than a casual interest in global warming and climate change - one of the most important and challenging issues of our time. This new edition includes actual data from climate science into 2021. Numerous Powerpoint slides can be downloaded to allow lecturers and teachers to more effectively use the book as a basis for climate change education.
    Type of Medium: Online Resource
    Pages: XVI, 1001 p. 780 illus., 479 illus. in color. , online resource.
    Edition: 3rd ed. 2021.
    ISBN: 9783030763398
    DDC: 500
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: 9783030763381 (e-book)
    Description / Table of Contents: Chapter 1. Introduction -- Chapter 2. Discovering Climate -- Chapter 3. The Language of Science -- Chapter 4. Applying Mathematics to Problems -- Chapter 5. Geologic Time -- Chapter 6. Putting Numbers on Geologic Ages -- Chapter 7. Documenting Past Climate Change -- Chapter 8. The Nature of Energy Received From the Sun – The Analogies with Water Waves and Sound -- Chapter 9. The Nature of Energy Received From the Sun---Figuring Out What Light Really Is -- Chapter 10. Exploring the Electromagnetic Spectrum -- Chapter 11. The Origins of Climate Science---The Idea Of Energy Balance -- Chapter 12. The Climate System -- Chapter 13. What’s At The Bottom of Alice’s Rabbit Hole -- Chapter 14. Energy from the Sun---Long-Term Variations -- Chapter 15. Solar Variability and Cosmic Rays -- Chapter 16. Albedo -- Chapter 17. Air -- Chapter 18. HOH---The Keystone Of Earth’s Climate -- Chapter 19. The Atmosphere -- Chapter 20. Oxygen and Ozone---Products and Protectors of Life -- Chapter 21. Water Vapor---The Major Greenhouse Gas -- Chapter 22. Carbon Dioxide -- Chapter 23. Other Greenhouse Gases -- Chapter 24. The Earth Is a Sphere and Rotates -- Chapter 25. The Coriolis Effect -- Chapter 26. The Circulation of Earth’s Atmosphere -- Chapter 27. The Circulation of Earth’s Oceans -- Chapter 28. The Biological Interactions -- Chapter 29. Sea Level -- Chapter 30. Global Climate Change---The Geologically Immediate Past -- Chapter 31. Human Impacts on the Environment and Climate -- Chapter 32. Predictions of the Future of Humanity -- Chapter 33. Is there an Analog for the Future Climate -- Chapter 34. The Instrumental Temperature Record -- Chapter 35. The Changing Climate of the Polar Regions -- Chapter 36. Global, Regional and Local Effects of Our Changing Climate -- Chapter 37. Final Thoughts.
    Description / Table of Contents: This book is a thorough introduction to climate science and global change. The author is a geologist who has spent much of his life investigating the climate of Earth from a time when it was warm and dinosaurs roamed the land, to today's changing climate. Bill Hay takes you on a journey to understand how the climate system works. He explores how humans are unintentionally conducting a grand uncontrolled experiment which is leading to unanticipated changes. We follow the twisting path of seemingly unrelated discoveries in physics, chemistry, biology, geology, and even mathematics to learn how they led to our present knowledge of how our planet works. He explains why the weather is becoming increasingly chaotic as our planet warms at a rate far faster than at any time in its geologic past. He speculates on possible future outcomes, and suggests that nature itself may make some unexpected course corrections. Although the book is written for the layman with little knowledge of science or mathematics, it includes information from many diverse fields to provide even those actively working in the field of climatology with a broader view of this developing drama. Experimenting on a Small Planet is a must read for anyone having more than a casual interest in global warming and climate change - one of the most important and challenging issues of our time. This new edition includes actual data from climate science into 2021. Numerous Powerpoint slides can be downloaded to allow lecturers and teachers to more effectively use the book as a basis for climate change education.
    Type of Medium: 12
    Pages: 1 Online-Ressource (xvi, 1001 Seiten) , Illustrationen
    Edition: Third edition
    ISBN: 9783030763381
    Language: English
    Note: Contents 1 Introduction 1.1 Leningrad—1982 1.2 ‘Global Warming’ or ‘Global Weirding’ 1.3 My Background 1.4 What Is Science? 1.5 The Observational Sciences 1.6 The Compexity of Nature 1.7 Summary 2 Discovering Climate 2.1 Defining ‘Climate’ 2.2 Numerical Descriptions of Climate 2.3 How Science Works 2.4 Summary 3 The Language of Science 3.1 Numbers and Symbols 3.2 Arithmetic, Algebra, Geometry, and Calculus 3.3 Shapes 3.4 Orders of Magnitude and Exponents 3.5 Logarithms 3.6 Logarithms and Scales with Bases Other Than 10 3.7 Earthquake Scales 3.8 The Beaufort Wind Force Scale 3.9 Extending the Beaufort Scale to Cyclonic Storms 3.10 Calendars and Time 3.11 Summary 4 Applying Mathematics to Problems 4.1 Measures and Weights 4.2 The Nautical Mile 4.3 The Metric System 4.4 Temperature 4.5 Precisely Defining Some Words You Already Know 4.6 Locating Things 4.7 Latitude and Longitude 4.8 Map Projections 4.9 Trigonometry 4.10 Circles, Ellipses, and Angular Velocity 4.11 Centripetal and Centrifugal Forces 4.12 Graphs 4.13 Exponential Growth and Decay 4.14 The Logistic Equation 4.15 Statistics 4.16 Summary 5 Geologic Time 5.1 Age of the Earth—4004 BCE, or Older? 5.2 The Discovery of the Depths of Time—Eternity 5.3 Geologic Time Punctuated by Revolutions 5.4 Catastrophism Replaced by Imperceptibly Slow Gradual Change 5.5 The Development of the Geological Timescale 5.6 The Discovery of the Ice Age 5.7 The Discovery of Past Warm Polar Regions 5.8 Throwing a Monkey Wrench into Explaining Climate Change 5.9 Crustal Mobility’ to the Rescue 5.10 The Return of Catastrophism and the Idea of Rapid Change 5.11 The Nature of the Geologic Record 5.12 The Great Extinctions and Their Causes 5.13 Summary—A History with No Dates 6 Putting Numbers on Geologic Ages 6.1 1788—An Abyss of Time of Unknown Dimensions 6.2 1863—Physics Comes to the Rescue—Earth Is Not More than 100 Million Years Old 6.3 What We Now Know About Heat from Earth’s Interior 6.4 Some Helpful Background in Understanding Nineteenth-Century Chemistry 6.5 Atomic Weight, Atomic Mass, Isotopes, Relative Atomic Mass, Standard Atomic Weight—A Confusing Plethora of Terms 6.6 1895–1913—The Worlds of Physics and Chemistry Turned Upside Down 6.7 Henri Becquerel and the Curies 6.8 Nonconformists and the British Universities Open to All 6.9 The Discovery of Electrons, Alpha-Rays, and Beta-Rays 6.10 The Discovery of Radioactive Decay Series, Exponential Decay Rates, and Secular Equilibrium 6.11 The Mystery of the Decay Series Explained by Isotopes 6.12 The Discovery That Radioactive Decay Series Might Be Used to Determine the Age of Rocks 6.13 The Discovery of Stable Isotopes 6.14 Rethinking the Structure of the Atom 6.15 From Science to Science Fiction 6.16 The Discovery of Protons and Neutrons 6.17 Arthur Holmes and the Age of the Earth 6.18 The Development of a Numerical Geological Timescale 6.19 Summary 7 Documenting Past Climate Change 7.1 What Is ‘Climate’? 7.2 A Brief Overview of Earth’s Climate History 7.3 The Cenozoic Climate ‘Deterioration’ 7.4 From Ages to Process Rates 7.5 Radiometric Age Dating in the Mid-Twentieth Century 7.6 Potassium—Argon Dating 7.7 Reversals of Earth’s Magnetic Field 7.8 Fission Track Dating 7.9 Astronomical Dating 7.10 Tritium, Carbon-14, and Beryllium-10 7.11 The Human Acceleration of Natural Process Rates 7.12 The Present Climate in Its Geologic Context 7.13 Steady State Versus Non-steady State 7.14 Feedbacks 7.15 Summary 8 The Nature of Energy Received from the Sun—The Analogies with Water Waves and Sound 8.1 Water Waves 8.2 Special Water Waves—Tides and Tsunamis 8.3 Wave Energy, Refraction, and Reflection 8.4 Sound Waves 8.5 Sound Waves and Music 8.6 Measuring the Speed of Sound in Air 8.7 Measuring the Speed of Sound in Water 8.8 The Practical Use of Sound in Water 8.9 Summary 9 The Nature of Energy Received from the Sun—Figuring Out What Light Really Is 9.1 Early Ideas About Light 9.2 Refraction of Light 9.3 Measuring the Speed of Light 9.4 The Discovery of Double Refraction or ‘Birefringence’ 9.5 Investigating the Dispersion of Light 9.6 Figuring Out the Wavelengths of Different Colors of Light 9.7 Diffraction 9.8 Polarization of Light 9.9 Eureka!—Light Is Electromagnetic Waves 9.10 A Review of the Discovery of the Invisible Parts of the Electromagnetic Spectrum 9.11 The Demise of the ‘Luminiferous Æther’ 9.12 Summary 10 Exploring the Electromagnetic Spectrum 10.1 Spectra and Spectral Lines 10.2 The Discovery of Helium—First in the Sun, Then on Earth 10.3 The Discovery That Spectral Lines Are Mathematically Related 10.4 Heinrich Hertz’s Confirmation of Maxwell’s Ideas 10.5 Marconi Makes the Electromagnetic Spectrum a Tool for Civilization 10.6 Human Use of the Electromagnetic Spectrum for Communication, Locating Objects, and Cooking 10.7 Summary 11 The Origins of Climate Science—The Idea of Energy Balance 11.1 What Is Heat? 11.2 Thermodynamics 11.3 The Laws of Thermodynamics 11.4 The Discovery of Greenhouse Gases 11.5 Kirchhoff’s ‘Black Body’ 11.6 Stefan’s Fourth Power Law 11.7 Black Body Radiation 11.8 Summary 12 The Climate System 12.1 Insolation—The Incoming Energy from the Sun 12.2 Albedo—The Reflection of Incoming Energy Back into Space 12.3 Reradiation—How the Earth Radiates Energy Back into Space 12.4 The Chaotic Nature of the Weather 12.5 The Earthly Components of the Climate System: Air, Earth, Ice, and Water 12.6 The Atmosphere 12.7 The Hydrosphere 12.8 The Cryosphere 12.9 The Land 12.10 Classifying Climatic Regions 12.11 Uncertainties in the Climate Scheme 12.12 Summary 13 What Is at the Bottom of Alice’s Rabbit Hole? 13.1 Max Planck and the Solution to the Black Body Problem 13.2 The Photoelectric Effect 13.3 The Bohr Atom 13.4 Implications of the Bohr Model for the Periodic Table of the Elements 13.5 The Zeeman Effect 13.6 Trying to Make Sense of the Periodic Table 13.7 The Second Quantum Revolution 13.8 The Discovery of Nuclear Fission 13.9 Molecular Motions 13.10 Summary 14 Energy from the Sun—Long-Term Variations 14.1 The Faint Young Sun Paradox 14.2 The Energy Flux from the Sun 14.3 The Orbital Cycles 14.4 The Rise and Fall of the Orbital Theory of Climate Change 14.5 The Resurrection of the Orbital Theory 14.6 Correcting the Age Scale: Filling in the Details to Prove the Theory1 14.7 The Discovery that Milankovitch Orbital Cycles Have Affected Much of Earth History 14.8 Summary 15 Solar Variability and Cosmic Rays 15.1 Solar Variability 15.2 The Solar Wind 15.3 Solar Storms and Space Weather 15.4 The Solar Neutrino Problem 15.5 The Ultraviolet Radiation 15.6 Cosmic Rays 15.7 A Digression into the World of Particle Physics 15.8 How Cosmic Rays Interact with Earth’s Atmosphere 15.9 Carbon-14 15.10 Beryllium-10 15.11 Cosmic Rays and Climate 15.12 Summary 16 Albedo 16.1 Albedo of Planet Earth 16.2 Clouds 16.3 Could Cloudiness Be a Global Thermostat? 16.4 Volcanic Ash and Climate Change 16.5 Aerosols 16.6 Albedo During the Last Glacial Maximum 16.7 Changing the Planetary Albedo to Counteract Greenhouse Warming 16.8 Summary 17 Air 17.1 The Nature of Air 17.2 The Velocity of Air Molecules 17.3 Other Molecular Motions 17.4 The Other Major Component of Air—Photons 17.5 Ionization 17.6 The Scattering of Light 17.7 Absorption of the Infrared Wavelengths 17.8 Other Components of Air: Subatomic Particles 17.9 Summary 18 HoH—The Keystone of Earth’s Climate 18.1 Some History 18.2 Why Is HOH So Strange? 18.3 The Hydrologic Cycle 18.4 Vapor 18.4.1 Pure Water 18.5 Natural Water 18.6 Water—Density and Specific Volume 18.7 Water—Surface Tension 18.8 Ice 18.9 Earth’s Ice 18.10 How Ice Forms from Freshwater and from Seawater 18.11 Snow and ICE on Land 18.12 Ice Cores 18.13 Ice as Earth’s Climate Stabilizer 19 The Atmosphere 19.1 Atmospheric Pressure 19.2 The Structure of the Atmosphere 19.3 The Troposphere 19.4 The Stratosphere 19.5 The Mesosphere 19.6 The Thermosphere 19.7 The Exosphere 19.8 The Magnetosphere 19.9 The Ionosphere 19.10 The Atmospheric Greenhouse Effect 19.11 Th
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Call number: AWI A3-08-0058
    In: Special paper, 426
    Type of Medium: Monograph available for loan
    Pages: IV, 214 S. : Ill., graph. Darst., Kt.
    ISBN: 9780813724263
    Series Statement: Special paper / Geological Society of America (GSA) 426
    Language: English
    Note: Contents: Introduction. - 1. Coastlines as zones of interaction among geological processes, climate change, and socioeconomic development? - Modeling opportunities / J. Harff, W. W. Hay, and D. F. Tetzlaff. - Models describing the driving forces of coastal change and effects of their interrelation. - 2. Postglacial coastal evolution: Ice-ocean-solid Earth interactions in a period of rapid climate change / W. R. Peltier. - 3. Simulation of the Eemian interglacial and possible mechanisms for the glacial inception / F. Kaspar and U. Cubasch. - 4. Predicting seabed change as a function of climate change over the next 50 yr in the Australian southeast / F. Li, C. P. Dyt, C. M. Griffiths, and K. L. McInnes. - 5. Interaction among sedimentation, compaction, and groundwater flow in coastal settings / D. M. Tetzlaff and M.-T. Schafmeister. - Model areas. - The Arctic and the Northern Hemisphere. - 6. The Laptev Sea system since the Last Glacial / H. Kassens, J. Thiede, H. A. Bauch, J. A. Hoelemann, I. Dmitrenko, S. Pivovarov, S. Priamikov, L. Timokhov, and C. Wegner. - 7. The evolution and degradation of coastal and offshore permafrost in the Laptev and Eastern Siberian Seas during the last climatic cycle / P. P. Overduin, H.-W. Hubberten, V. Rachold, N. Romanovskii, M. Grigoriev, and M. Kasymskaya. - 8. Climate and the migration of early peoples into the Americas / R. Hetherington, A. J. Weaver, and Á. Montenegro. - Marginal seas. - 9. The Baltic Sea coast - A model of interrelations among geosphere, climate, and anthroposphere / J. Harff, W. Lemke, R. Lampe, F. Lüth, H. Lübke, M. Meyer, F. Tauber, and U. Schmölcke. - 10. Southern Baltic Sea level oscillations: New radiocarbon, pollen, and diatom evidences of from the Puck Lagoon (Poland) / S. Uscinowicz, J. Zachowicz, G. Miotk-Szpiganowicz, and A. Witkowski. - 11. Modelling Holocene coastal erosion and sediment supply in the western North Sea / J. G. Rees, R. Newsham, and C. D. R. Evans. - 12. A Black Sea lowstand at 8500 yr B.P. indicated by a relict coastal dune system at a depth of 90 m below sea level / G. Lericolais, I. Popescu, F. Guichard, and S. Popescu. - 13. Sinis Peninsula (western Sardinia, Italy) coastal system analysis using hydrodynamic and remote sensing techniques / A. Atzeni, D. Pani, and N. Ibba. - 14. A long-term morphological modeling study on the evolution of the Pearl River Delta, network system, and estuarine bays since 6000 yr B.P. / C. Y. Wu, J. Ren, Y. Bao, Y. P. Lei, and H. Y. Shi. - Index.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Terra nova 4 (1992), S. 0 
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The ultimate cause of the onset of glaciations remains elusive, but in the case of northem hemisphere glaciation it is probable that several factors acted in combination. General global cooling resulted from reduction of atmospheric C02 by weathering of silicate rocks exposed by erosion of late Cenozoic uplifts. Uplifts in south Asia, southwestern North America and Scandinavia occurred at distances appropriate for the generation of quasi-permanent Rossby waves in the atmosphere. The resulting winds, given suitable moisture sources, were favourable for causing large-scale precipitation at mid-latitudes on the northern continents. Moisture sources were provided by the closure of the Central American isthmus. Gulf Stream flow increased, carrying warm subtropical waters to high latitudes. The Denmark Strait deepened permitting greater outflow of deep water from the Norwegian-Greenland Sea. The relative importance of each of these factors should be investigated by additional atmospheric and ocean climate model sensitivity studies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    International journal of earth sciences 78 (1989), S. 207-242 
    ISSN: 1437-3262
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Description / Table of Contents: Abstract Paleogeography, paleotopography, and paleobathymetry of a closed erosion-depositional system can be reconstructed by restoring sedimentary masses to elevated surfaces in a drainage basin based on the inverse of present erosion equations and adjusting for isostasy, sea level changes, sediment compaction, and thermal subsidence. The erosion-deposition history of the northwestern Gulf of Mexico margin and its western-central North American source area during the Cenozoic is used to explore the sensitivity of mass balance reconstructions, and changes in assumptions concerning erosion rate parameters and sea level. Analysis of the distributions of sedimentary material and mass-balanced paleogeographic reconstructions of the study area indicate the following specific results: 1) most of the Pleistocene sediment in the Gulf of Mexico is not of glacial origin but is derived from the high plains and reflects uplift of the Rocky Mountains and High Plains since the Late Pliocene; and 2) paleoshorelines predicted from mass-balanced reconstructions using theHaq et al. (1987) global sea level curve do not match the shoreline indicated by sedimentary sequences and suggest that the amplitude of sea level changes in the Gulf coast is between one-fourth and three-fourths, most likely one-half, that of the published eustatic sea level curve.
    Abstract: Résumé Si une région constitue un système fermé en régard aux processus d'érosion et de sédimentation, il est possible d'en établir la paléogéographie, la paléotopographie et la paléobathymétrie en reconstituant sur les surfaces élevées les volumes dont l'érosion a donné lieu aux accumulations dans le bassin de sédimentation; cette opération doit tenir compte des effets de l'isostasie, des changements du niveau de la mer et des soulèvements et affaissements thermiques de la topographie. L'histoire de l'érosion et de la sédimentation dans la région formée par la bordure NW du Golfe du Mexique et son aire nourricière (ouest et centre de l'Amérique du Nord) pendant le Cénozoïque présente les conditions requises et permet de tester le principe d'un tel modèle de bilan des volumes. Les reconstitutions paléogéographiques équilibrées de l'aire étudiée fournissent les résultats suivants: 1. la plus grande part du soulèvement des Montagnes Rocheuses et des Hautes Plaines a eu lieu depuis le Pliocène; 2. les paléo-lignes de rivage que l'on déduit de ces reconstitutions au moyen des courbes eustatiques du niveau de la mer ne correspondent pas aux limites entre sédiments marins et continentaux; elles suggèrent que les changement du niveau de la mer le long de la cóte du golfe n'atteignent approximativement que la moitié des valeurs données par les courbes eustatiques deHaq et al. (1987).
    Notes: Zusammenfassung Die Paläogeographie, Paläotopographie und Paläobathymetrie eines geschlossenen Erosions-Depositions-Systems kann abgeschätzt werden, indem man die Sedimentmengen rekonstruiert und auf die Hochflächen in einem Entwässerungsbecken projiziert. Dies basiert auf den heutigen inversen Erosionsratengleichungen und der Korrektur für Isostasie, Meeresspiegelschwankungen und thermale Hebung oder Zerfall der Topographie. Die Erosions-Depositions-Geschichte des nordwestlichen Randes des Golf von Mexiko und seines west- bis zentralnordamerikanischen Schüttungsgebietes während des Känozoikums entsprechen einem geschlossenen Modell und erlauben das Testen der Prinzipien der Massen-Ausgleichs-Modellierung. Rekonstruktionen einer ausgeglichenen Paläogeographie des Arbeitsgebietes ergeben die folgenden spezifischen Ergebnisse: 1. Die maximale Hebungsrate der Rocky Mountains und der Hochebenen fand während des oberen Pliozäns statt. 2. Die Paläo-Küstenlinien, die mit Ausgleichsrekonstruktionen basierend auf durchschnittlichen Meeresspiegelkurven erstellt wurden, stimmen nicht mit marin-nichtmarinen Sedimentfolgen überein und beinhalten ferner, daß die Amplitude der Meeresspiegelschwankungen an der Golfküste nur etwa der Hälfte der eustatischen Meeresspiegelkurve vonHaq et al. (1987) entspricht.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    International journal of earth sciences 70 (1981), S. 302-315 
    ISSN: 1437-3262
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Description / Table of Contents: Abstract The breakup of Pangaea through rifting and separation of the continents has special implications for the global pattern of sedimentation. The important initial conditions of Pangaea are area, elevation, the nature of the drainage and climate. The development of interior uplifts associated with rifting caused significant reorganization of drainage systems. Rifting and continental breakup result in unique sediment sequences on passive margins. The initial rift valleys were probably occupied by stratified fresh water lakes due to the equable Mesozoic climate, and during this phase might have accumulated about 7.5×1021 g of organic carbon; this would be 14% of the earth's total organic carbon concentrated on only 0.3% of the earth's surface. The sediments rich in organic carbon are expected to be typically overlain by evaporites. Sedimentation on the continental shelf is a complex interplay of thermal subsidence, sea level changes, sediment supply and isostatic adjustment. Beyond the shelf break, sedimentation rates in the world ocean appear to change significantly with time; during the Aptian-Albian, Campanian-Maastrichtian, Middle Eocene and Late Miocene-Quaternary overall sedimentation rates were about an order of magnitude higher than during the intervening periods. This variation is likely to be related to changing sediment supply responding to changes in sea level.
    Abstract: Résumé La dislocation de la Pangée, par fracturation (rifting) et séparation des continents, entraîne des implications particulières en ce qui concerne les modèles de sédimentation à l'échelle du globe. Les conditions initiales importantes de la Pangée sont la surface, l'altitude, la nature du drainage et le climat. Le développement de soulèvements intérieurs en association avec les processus de fracturation (rifting) fut la cause d'une importante réorganisation du système de drainage. Sur les marges continentales passives, des séquences sédimentaires uniqes résultent de ces processus de caussure (rifting), et de dislocation. Les vallées médianes (rifts) initiales ont été probablement occupées par des lacs à eaux douces stratifiées, dues au climat égal du Mésozoique, et ont pu durant cette période accumuler environ 7.5×2021 g. de carbone organique; cette quantité serait l'équivalent de 14% du carbone organique total du globe, concentrés sur 0.3% de sa surface. Les sédiments riches en carbone organique sont supposés être typiquement recouverts par des dépôts évaporitiques. La sédimentation sur le plateau continental se trouve en interaction complexe avec la subsidence thermique, les fluctuations du niveau des océans, les apports en sédiments et les ajustements isostatiques. Au delà de la limite externe du plateau continental, les taux de sédimentation dans les océans semblent varier de manière importante dans le temps; durant l'Aptien-Albien, le Campanien-Maastrichtien, L'Eocène moyen et le Miocène supérieur-Quaternaire, les taux d'ensemble de sédimentation ont été environ d'un ordre de grandeur plus élevé que durant les périodes intermédiaires. Cette variation est vraisemblablement liée aux changements des apports en sédiments, en réponse aux fluctuations du niveau océanique.
    Notes: Zusammenfassung Das Aufbrechen Pangaeas durch Spaltung und Separation der Kontinente hat spezielle Auswirkungen auf die globale Sedimentationsverteilung. Die bedeutenden Anfangsbedingungen Pangaeas sind Größe, Höhe, Abfluß- und Klimasituation. Die Entwicklung innerer Aufwölbungen, zusammen mit Spaltenbildung, hat eine entscheidende Reorganisation der Abflußsysteme bewirkt. Spaltung und Aufbrechen des Kontinents resultieren in einer einzigartigen Sedimentationsfolge an den passiven Rändern. Die anfänglichen Spaltungstäler waren wahrscheinlich von geschichteten Süßwasserseen eingenommen, hervorgerufen vom ausgeglichenen mesozoischen Klima. Während dieser Zeit können sich dort etwa 7,5 · 1021 g organischer Kohlenstoffe angesammelt haben, d. h. 14 % der weltweiten organischen Kohlenstoffe auf nur 0,3 % der Erdoberfläche. Die kohlenstoffreichen Sedimente sind typischerweise von Evaporiten überlagert. Sedimentation auf dem kontinentalen Schelf ist ein komplexes Zusammenspiel von Temperatursenkung, Wasserspiegelschwankungen, Sedimentsangebot und isostatischem Gleichgewicht. Jenseits des Schelfabhanges scheinen die Sedimentationsraten im Weltmeer signifikant mit der Zeit zu schwanken. Während des Aptiums-Albs, des Campaniums-Maastrichts, des Mittleren Eozäns und des Späten Miozän-Quartärs lagen die gesamten Sedimentationsraten um eine Größenordnung höher als in den dazwischenliegenden Zeiträumen. Diese Variation hängt wahrscheinlich mit einem geänderten Sedimentsangebot zusammen, das von Wasserspiegelschwankungen hervorgerufen wird.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    International journal of earth sciences 79 (1990), S. 495-512 
    ISSN: 1437-3262
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Description / Table of Contents: Abstract The global mass/age distribution of Phanerozoic sediment shows maxima in the Middle Paleozoic, at the Paleozoic-Mesozoic boundary, and in the Late Mesozoic. All of these total sediment mass maxima are also maxima of masses of volcanogenic sediment and non-marine sediment, and represent times of maximum sediment flux on the surface of the earth. The Middle Paleozoic and Late Mesozoic maxima correspond to the great marine inundations of the continents, and the Late Paleozoic-Early Mesozoic maximum to the time of transfer of a large number of terranes across the Tethys from Gondwanaland to Eurasia. All three maxima of sedimentary mass correspond to times of rapid sea-floor spreading and orogeny. Organic carbon in dispersed form is enriched in sediments forming hydrocarbons during the sediment flux maxima of the Middle Paleozoic and Late Mesozoic (Jurassic-Cretaceous), but is preserved as coal during sediment flux minima of the Carboniferous and Early Cenozoic. Sedimentary iron deposits and phosphorite deposition are most widespread when the global sedimentary flux is minimal. Potassium salts were deposited at times of sediment flux
    Abstract: Résumé Au cours du Phanérozoïque, la répartition a l'échelle globale de la masse des sédiments déposés en fonction de leur âge présente des maxima au Paléozoïque moyen, à la limite Paléozoïque-Mésozoïque et au Mésozoïque supérieur; elle présente des minima aux autres périodes. Tous ces maxima de la masse totale des sédiments sont aussi des maxima des sédiments volcanoclastiques et des sédiments continentaux; ils représentent les périodes oú les transports sédimentaires étaient les plus importants à la surface du globe. Les maxima du Paléozoïque supérieur correspondent aux grandes invasions marines des continents, tandis que le maximum paléozoïque-mésozoïque correspond au transfert à travers la Téthys d'un grand nombre de «terranes» du Gondwana vers l'Eurasie. Les trois maxima correspondent également à des périodes d'expansion océanique rapide et d'orogenèse active. Le carbone organique s'est déposé sous forme dispersée dans les sédiments marins (roches-mères des hydrocarburse) lors des maxima du Paléozoïque moyen et du Mésozoïque supérieur, tandis qu'il a été conservé sous forme de charbon lors des minima du Carbonifère et du Cénozoïque inférieur. Les dépôts de minerais de fer sédimentaires oolitiques et de phosphate présentent leur plus grande extension au cours des périodes de sédimentation globale minimale. Les sels potassiques se sont déposés pendant les périodes de sédimentation maximale.
    Notes: Zusammenfassung Die globale Verteilung der Sedimentmassen nach ihrem Alter zeigt Massenmaxima im Mittel-Paläozoikum, an der Grenze Paläozoikum-Mesozoikum und im Spät-Mesozoikum, sowie Massenminima dazwischen. Die Maxima der gesamten Sedimentmasse sind auch Maxima der vulkanogenen und terrestrischen Sedimente; sie fallen in Zeiten maximaler Erosion, Umlagerung und Sedimentation. Die mittel-paläozoischen und spät-mesozoischen Maxima sind zeitlich mit den größten Überflutungen der Kontinenten verbunden. An der Wende vom Paläozoikum zum Mesozoikum, an der es keinen Hochstand des Meeresspiegels gab, überwucherten viele kleinere Kontinentschollen die Tethys von Gondwana nach Asien. Vermutlich waren alle drei Maxima auch Zeiten maximalen Sea-floor Spreadings und der Orogenese. Organischer Kohlenstoff wurde während der Sedimentations-Maxima im mittleren Paläozoikum und späteren Mesozoikum (Jura-Kreide) in marinen Sedimenten angereichert aber während der Sedimentationsminima im Spät-Paläozoikum und im frühen Känozoikum als Kohle abgelagert. Eisenoolite und Phosphorite finden ihre weiteste Verbreitung zu Zeiten der Sedimentationsminima. Kalisalze wurden zu den Zeiten der Sedimentationsmaxima ausgeschieden.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Mathematical geology 8 (1976), S. 511-527 
    ISSN: 1573-8868
    Keywords: analogcomputer simulation ; systems analysis ; geochemistry ; oceanography
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Mathematics
    Notes: Abstract Broecker presented a steady-state, two-box model which emphasizes the role of kinetic factors in determining the chemical composition of sea water. Unlike thermodynamic models, Broecker's model suggests that sizable temporal variation in the composition of sea water and rates of sedimentation may have taken place in the past 100 million years. To describe the evolution of the ocean's chemical system and interpret variations observed in the sedimentary record, we have formulated a dynamical model. Mass-balance consideration leads to a set of coupled nonlinear differential equations. The equations are linearized and solved for step function changes in the rate of river input and in the rate of vertical mixing. This simple model of the ocean's chemical system is shown to be stable against oscillations. Using data for the modern ocean, the response times for P, C, Si, Ca, and Ba are calculated to be of the order of 104 to 106 yr for changes in river and other inputs and of the order 101 to 102 yr for a change in the rate of vertical mixing. Analog-simulation techniques, discussed for the situation of the two-box model, provide a powerful tool for treating nonlinearities and systems with more than two components. In the final section, consequences of the dynamical formulation are compared with parameters appearing in Broecker's steady-state formulation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    Publication Date: 2023-06-27
    Keywords: 1-2; Abundance estimate; Ceratolithus cristatus; Coccolithus pseudoumbilicus; Cyclococcolithus leptoporus; Deep Sea Drilling Project; DEPTH, sediment/rock; Discoaster brouweri; Discoaster brouweri rutellus; Discoaster extensus; Discoaster pentaradiatus; Discoaster surculus; Discoaster triradiatus; Discolithina anisotrema; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Gephyrocapsa aperta; Gephyrocapsa caribbeanica; Gephyrocapsa oceanica; Glomar Challenger; Gulf of Mexico/KNOLL; Helicopontosphaera kamptneri; Leg1; Rhabdosphaera clavigera; Sample code/label; Scyphosphaera apsteinii; Stratigraphy; Umbilicosphaera mirabilis; Umbilicosphaera sp.
    Type: Dataset
    Format: text/tab-separated-values, 74 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    Publication Date: 2023-06-27
    Keywords: 1-5; Abundance estimate; Coccolithus eopelagicus; Deep Sea Drilling Project; DEPTH, sediment/rock; Discoaster nephados; Discoaster perplexus; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Gephyrocapsa oceanica; Glomar Challenger; Leg1; North Atlantic/BASIN; Sample code/label; Stratigraphy
    Type: Dataset
    Format: text/tab-separated-values, 7 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...