ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    Publication Date: 2020-07-08
    Description: Seamounts represent ideal systems to study the influence and interdependency of environmental gradients at a single geographic location. These topographic features represent a prominent habitat for various forms of life, including microbiota and macrobiota, spanning benthic as well as pelagic organisms. While it is known that seamounts are globally abundant structures, it still remains unclear how and to which extent the complexity of the sea floor is intertwined with the local oceanographic mosaic, biogeochemistry, and microbiology of a seamount ecosystem. Along these lines, the present study aimed to explore whether and to what extent seamounts can have an imprint on the microbial community composition of seawater and of sessile benthic invertebrates, sponges. For our high-resolution sampling approach of microbial diversity (16S rRNA gene amplicon sequencing) along with measurements of inorganic nutrients and other biogeochemical parameters, we focused on the Schulz Bank seamount ecosystem, a sponge ground ecosystem which is located on the Arctic Mid-Ocean Ridge. Seawater samples were collected at two sampling depths (mid-water, MW, and near-bed water, BW) from a total of 19 sampling sites. With a clustering approach we defined microbial microhabitats within the pelagic realm at Schulz Bank, which were mapped onto the seamount's topography and related to various environmental parameters (such as suspended particulate matter, SPM; dissolved inorganic carbon, DIC; silicate, SiO4-; phosphate, PO43-; ammonia, NH4+; nitrate, NO32-; nitrite, NO2-; depth; and dissolved oxygen, O2). The results of our study reveal a “seamount effect” (sensu stricto) on the microbial mid-water pelagic community at least 200 m above the sea floor. Further, we observed a strong spatial heterogeneity in the pelagic microbial landscape across the seamount, with planktonic microbial communities reflecting oscillatory and circulatory water movements, as well as processes of bentho-pelagic coupling. Depth, NO32-, SiO4-, and O2 concentrations differed significantly between the determined pelagic microbial clusters close to the sea floor (BW), suggesting that these parameters were presumably linked to changes in microbial community structures. Secondly, we assessed the associated microbial community compositions of three sponge species along a depth gradient of the seamount. While sponge-associated microbial communities were found to be mainly species-specific, we also detected significant intra-specific differences between individuals, depending on the pelagic near-bed cluster they originated from. The variable microbial phyla (i.e. phyla which showed significant differences across varying depth, NO32-, SiO4-, O2 concentrations, and different from local seawater communities) were distinct for every sponge species when considering average abundances per species. Variable microbial phyla included representatives of both those taxa traditionally counted for the variable community fraction and taxa counted traditionally for the core community fraction. Microbial co-occurrence patterns for the three examined sponge species Geodia hentscheli, Lissodendoryx complicata, and Schaudinnia rosea were distinct from each other. Over all, this study shows that topographic structures such as the Schulz Bank seamount can have an imprint (seamount effect sensu lato) on both the microbial community composition of seawater and sessile benthic invertebrates such as sponges by an interplay between the geology, physical oceanography, biogeochemistry, and microbiology of seamounts.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2017-12-21
    Electronic ISSN: 1932-6203
    Topics: Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-11-15
    Description: Thriving benthic communities were observed in the oxygen minimum zones along the southwestern African margin. On the Namibian margin, fossil cold-water coral mounds were overgrown by sponges and bryozoans, while the Angolan margin was characterized by cold-water coral mounds covered by a living coral reef. To explore why benthic communities differ in both areas, present-day environmental conditions were assessed, using conductivity–temperature–depth (CTD) transects and bottom landers to investigate spatial and temporal variations of environmental properties. Near-bottom measurements recorded low dissolved oxygen concentrations on the Namibian margin of 0–0.15 mL L−1 (≜0 %–9 % saturation) and on the Angolan margin of 0.5–1.5 mL L−1 (≜7 %–18 % saturation), which were associated with relatively high temperatures (11.8–13.2 ∘C and 6.4–12.6 ∘C, respectively). Semidiurnal barotropic tides were found to interact with the margin topography producing internal waves. These tidal movements deliver water with more suitable characteristics to the benthic communities from below and above the zone of low oxygen. Concurrently, the delivery of a high quantity and quality of organic matter was observed, being an important food source for the benthic fauna. On the Namibian margin, organic matter originated directly from the surface productive zone, whereas on the Angolan margin the geochemical signature of organic matter suggested an additional mechanism of food supply. A nepheloid layer observed above the cold-water corals may constitute a reservoir of organic matter, facilitating a constant supply of food particles by tidal mixing. Our data suggest that the benthic fauna on the Namibian margin, as well as the cold-water coral communities on the Angolan margin, may compensate for unfavorable conditions of low oxygen levels and high temperatures with enhanced availability of food, while anoxic conditions on the Namibian margin are at present a limiting factor for cold-water coral growth. This study provides an example of how benthic ecosystems cope with such extreme environmental conditions since it is expected that oxygen minimum zones will expand in the future due to anthropogenic activities.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-02-25
    Description: Fossil cold-water coral mounds overgrown by sponges and bryozoans were observed in anoxic conditions on the Namibian margin, while mounds colonized by thriving cold-water coral reefs were found in hypoxic conditions on the Angolan margin. These low oxygen conditions do not meet known environmental ranges favoring cold-water corals and hence are expected to provide unsuitable habitats for cold-water coral growth and therefore reef formation. To explain why the living fauna can nevertheless thrive in both areas, present day environmental conditions at the southwestern African margin were assessed. Downslope CTD transects and the deployment of bottom landers were used to investigate spatial and temporal variations of environmental properties. Temporal measurements in the mound areas recorded oscillating low dissolved oxygen concentrations of 0–0.17 ml l−1 (≙ 0–9 % saturation) on the Namibian and 0.5–1.5 ml l−1 (≙ 7–18 % saturation) on the Angolan margin, which were associated with relatively high temperatures (11.8 13.2 °C and 6.4–12.6 °C respectively). Semi-diurnal barotrophic tides were found to interact with the margin topography producing internal waves with excursions of up to 70 and 130 m for the Namibian and Angolan margins, respectively. These tidal movements temporarily deliver water with more suitable characteristics to the coral mounds from below and above the hypoxic zone. Concurrently, the delivery of high quantity and quality of suspended particulate organic matter was observed, which serves as a food source for cold-water corals. On the Namibian slope organic matter indicates a completely marine source and originates directly from the surface productive zone, whereas on the Angolan margin the geochemical signature of organic material suggest an additional mechanisms of food supply. A nepheloid layer observed above the cold-water coral mound area on the Angolan margin may constitutes a reservoir of fresh organic matter, facilitating a constant supply of food particles by tidal mixing. This suggests that the cold-water coral communities as well as the associated fauna may compensate unfavorable conditions induced by low oxygen levels and high temperatures with an enhanced availability of food. With the expected expansion of oxygen minimum zones in the future due to anthropogenic activities, this study provides an example on how ecosystems could cope with such extreme environmental conditions.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Publication Date: 2021-10-28
    Description: Predicting the ambient environmental conditions in the coming several years to one decade is of key relevance for elucidating how deep-sea habitats, like for example sponge habitats, in the North Atlantic will evolve under near-future climate change. However, it is still not well known to what extent the deep-sea environmental properties can be predicted in advance. A regional downscaling prediction system is developed to assess the potential predictability of the North Atlantic deep-sea environmental factors. The large-scale climate variability predicted with the coupled Max Planck Institute Earth System Model with low-resolution configuration (MPI-ESM-LR) is dynamically downscaled to the North Atlantic by providing surface and lateral boundary conditions to the regional coupled physical-ecosystem model HYCOM-ECOSMO. Model results of two physical fields (temperature and salinity) and two biogeochemical fields (concentrations of silicate and oxygen) over 21 sponge habitats are taken as an example to assess the ability of the downscaling system to predict the interannual to decadal variations of the environmental properties based on ensembles of retrospective predictions over the period from 1985 to 2014. The ensemble simulations reveal skillful predictions of the environmental conditions several years in advance with distinct regional differences. In areas closely tied to large-scale climate variability and ice dynamics, both the physical and biogeochemical fields can be skillfully predicted more than 4 years ahead, while in areas under strong influence of upper oceans or open boundaries, the predictive skill for both fields is limited to a maximum of 2 years. The simulations suggest higher predictability for the biogeochemical fields than for the physical fields, which can be partly attributed to the longer persistence of the former fields. Predictability is improved by initialization in areas away from the influence of Mediterranean outflow and areas with weak coupling between the upper and deep oceans. Our study highlights the ability of the downscaling regional system to predict the environmental variations at deep-sea benthic habitats on time scales of management relevance. The downscaling system therefore will be an important part of an integrated approach towards the preservation and sustainable exploitation of the North Atlantic benthic habitats.
    Electronic ISSN: 2296-7745
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  (Master thesis), Christian-Albrechts-Universität zu Kiel, Kiel, Germany, 137 pp
    Publication Date: 2022-01-13
    Description: More than 100 years ago C.G.J. Petersen {1911) analyzed marine communities in the Scandinavian waters. He delivered broad and detailed information on the organisms living in the sea at that time. His studies were extended by Pearson et al. in 1984, which re-assessed the macrobenthic communities in the Kattegat and examined changes between the two time periods. The present status of these macrobenthic communities and alterations since the 1900's were determined and analyzed in this thesis. Therefore historical stations in the Kattegat were resampled at nine stations in 2010, 2011 and 2012 along a north-south transect. Abundance, Biomass, Diversity and number of genera were determined for every station respectively for the individual years. For the comparisons of benthic communities with these from former times only limited data was available. General community descriptions, mean biomass data and rank biomass data from Petersen {1918) and Pearson et al. {1985) were available. Recent data was adjusted to enable comparability. Multivariate analyses were used to detect changes of the community structures. Supplementary to the historical community analysis influences of different abiotic factors on recent communities were examined. One part of the factors were measured during the research cruises (salinity, oxygen concentration, pH and temperature), the other biotic and abiotic factors were obtained from different literature. Thereupon factors were correlated to the actual benthic communities if possible by regression analysis otherwise by general evaluations. The total biomass of organisms in the Kattegat declined of about one half since the 1900's. The highest recession was found in the northern and western area since the 1900's and in the southern and eastern area since the 1980' s. Biomass decreases were caused by increasing numbers of small opportunistic species, especially echinoderms and molluscs. A life-trait analysis revealed increasing numbers of tolerant species (especially suspension-feeders) since the 1900's. Large fragile species like Echinocardium cordatum, Brissopsis lyrifera and Arctica islandica disappeared to a great extent. Also many species which are known to benefit from high nutrient conditions disappeared, most probably due to the increase of low oxygen conditions. One species increased its abundance and biomass extensively, especially in the northern Kattegat: Amphiura filiformis. Community structures as defined by Petersen in 1911 were not detected anymore. It was possible to show that the benthic communities were significantly correlated with a biotic factors in the assessed time period. The main factor shaping the communities in 2010-12 was proven to be the oxygen concentration at the seafloor. In recent years most probably synergistic effects of eutrophication, fishing activity and climate change caused once more a regime shift of the macrobenthic communities of the Kattegat.
    Keywords: Course of study: MSc Biological Oceanography
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-01-31
    Description: Thriving benthic communities were observed in the oxygen minimum zones along the southwestern African margin. On the Namibian margin, fossil cold-water coral mounds were overgrown by sponges and bryozoans, while the Angolan margin was characterized by cold-water coral mounds covered by a living coral reef. To explore why benthic communities differ in both areas, present-day environmental conditions were assessed, using conductivity–temperature–depth (CTD) transects and bottom landers to investigate spatial and temporal variations of environmental properties. Near-bottom measurements recorded low dissolved oxygen concentrations on the Namibian margin of 0–0.15 mL L−1 (≜0 %–9 % saturation) and on the Angolan margin of 0.5–1.5 mL L−1 (≜7 %–18 % saturation), which were associated with relatively high temperatures (11.8–13.2 ∘C and 6.4–12.6 ∘C, respectively). Semidiurnal barotropic tides were found to interact with the margin topography producing internal waves. These tidal movements deliver water with more suitable characteristics to the benthic communities from below and above the zone of low oxygen. Concurrently, the delivery of a high quantity and quality of organic matter was observed, being an important food source for the benthic fauna. On the Namibian margin, organic matter originated directly from the surface productive zone, whereas on the Angolan margin the geochemical signature of organic matter suggested an additional mechanism of food supply. A nepheloid layer observed above the cold-water corals may constitute a reservoir of organic matter, facilitating a constant supply of food particles by tidal mixing. Our data suggest that the benthic fauna on the Namibian margin, as well as the cold-water coral communities on the Angolan margin, may compensate for unfavorable conditions of low oxygen levels and high temperatures with enhanced availability of food, while anoxic conditions on the Namibian margin are at present a limiting factor for cold-water coral growth. This study provides an example of how benthic ecosystems cope with such extreme environmental conditions since it is expected that oxygen minimum zones will expand in the future due to anthropogenic activities.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-02-08
    Description: Seamounts represent ideal systems to study the influence and interdependency of environmental gradients at a single geographic location. These topographic features represent a prominent habitat for various forms of life, including microbiota and macrobiota, spanning benthic as well as pelagic organisms. While it is known that seamounts are globally abundant structures, it still remains unclear how and to which extent the complexity of the sea floor is intertwined with the local oceanographic mosaic, biogeochemistry, and microbiology of a seamount ecosystem. Along these lines, the present study aimed to explore whether and to what extent seamounts can have an imprint on the microbial community composition of seawater and of sessile benthic invertebrates, sponges. For our high-resolution sampling approach of microbial diversity (16S rRNA gene amplicon sequencing) along with measurements of inorganic nutrients and other biogeochemical parameters, we focused on the Schulz Bank seamount ecosystem, a sponge ground ecosystem which is located on the Arctic Mid-Ocean Ridge. Seawater samples were collected at two sampling depths (mid-water, MW, and near-bed water, BW) from a total of 19 sampling sites. With a clustering approach we defined microbial microhabitats within the pelagic realm at Schulz Bank, which were mapped onto the seamount's topography and related to various environmental parameters (such as suspended particulate matter, SPM; dissolved inorganic carbon, DIC; silicate, SiO−4; phosphate, PO3−4; ammonia, NH+4; nitrate, NO2−3; nitrite, NO−2; depth; and dissolved oxygen, O2). The results of our study reveal a “seamount effect” (sensu stricto) on the microbial mid-water pelagic community at least 200 m above the sea floor. Further, we observed a strong spatial heterogeneity in the pelagic microbial landscape across the seamount, with planktonic microbial communities reflecting oscillatory and circulatory water movements, as well as processes of bentho-pelagic coupling. Depth, NO2−3, SiO−4, and O2 concentrations differed significantly between the determined pelagic microbial clusters close to the sea floor (BW), suggesting that these parameters were presumably linked to changes in microbial community structures. Secondly, we assessed the associated microbial community compositions of three sponge species along a depth gradient of the seamount. While sponge-associated microbial communities were found to be mainly species-specific, we also detected significant intra-specific differences between individuals, depending on the pelagic near-bed cluster they originated from. The variable microbial phyla (i.e. phyla which showed significant differences across varying depth, NO2−3, SiO−4, O2 concentrations, and different from local seawater communities) were distinct for every sponge species when considering average abundances per species. Variable microbial phyla included representatives of both those taxa traditionally counted for the variable community fraction and taxa counted traditionally for the core community fraction. Microbial co-occurrence patterns for the three examined sponge species Geodia hentscheli, Lissodendoryx complicata, and Schaudinnia rosea were distinct from each other. Over all, this study shows that topographic structures such as the Schulz Bank seamount can have an imprint (seamount effect sensu lato) on both the microbial community composition of seawater and sessile benthic invertebrates such as sponges by an interplay between the geology, physical oceanography, biogeochemistry, and microbiology of seamounts.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...