ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    MDPI - Multidisciplinary Digital Publishing Institute
    Publication Date: 2023-12-20
    Description: The book continues with an experimental analysis conducted to obtain accurate and complete information about electric vehicles in different traffic situations and road conditions. For the experimental analysis in this study, three different electric vehicles from the Edinburgh College leasing program were equipped and tracked to obtain over 50 GPS and energy consumption data for short distance journeys in the Edinburgh area and long-range tests between Edinburgh and Bristol. In the following section, an adaptive and robust square root cubature Kalman filter based on variational Bayesian approximation and Huber’s M-estimation is proposed to accurately estimate state of charge (SOC), which is vital for safe operation and efficient management of lithium-ion batteries. A coupled-inductor DC-DC converter with a high voltage gain is proposed in the following section to match the voltage of a fuel cell stack to a DC link bus. Finally, the book presents a review of the different approaches that have been proposed by various authors to mitigate the impact of electric buses and electric taxis on the future smart grid.
    Keywords: Q1-390 ; QC1-999 ; adaptive ; electric vehicle ; state of charge (SOC) ; high voltage gain ; lithium-ion battery ; climate change ; ssustainable transport ; driving cycle ; smart grid ; robust ; battery powered vehicle ; Huber’s M-estimation ; electric taxi ; public transportation ; sustainable development ; DC-DC converter ; square root cubature Kalman filter (SRCKF) ; coupled inductor ; fuel cell vehicles ; charging approaches ; ripple minimization current ; variational Bayesian approximation ; electric propulsion ; electric bus ; bic Book Industry Communication::G Reference, information & interdisciplinary subjects::GP Research & information: general
    Language: English
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-06-18
    Description: The proliferation of residential building energy consumption and CO2 emissions has led many countries to develop buildings under the green rating systems umbrella. Many such buildings, however, fail to meet their designed energy performance, which is possibly attributable to occupant behaviour and unforeseen building usages. The research problem lies in the fact that occupant environmental behaviour is a complex socio-cultural-technical issue that needs to be addressed to achieve the desired energy savings. This study is novel as it investigates complex interrelationships between many observed and unobserved variables using data from four LEED-certified multi-residential buildings in the United Arab Emirates. Structural Equation Modelling was used to analyse the impact of three unobserved/latent variables: occupant environmental Attitude, Knowledge and Behaviour (AKB) with respect to occupant energy consumption, based on measured/observed variables. Although our Goodness-of-Fit values indicated that we achieved a good model fit, the interrelationship between Knowledge and Behaviour (p = 0.557) and between Attitude and Behaviour (p = 0.931) was insignificant, as the p-values 〉 0.05. The key study outcomes were: (i) providing information alone could not motivate people towards environmentally friendly behaviour; (ii) even changes in their attitude, belief and lifestyle were not significantly related to their behaviour, as the interrelationships among occupant environmental AKB were not significant; and (iii) knowledge and attitude change should be combined with other motivational factors to trigger environmentally friendly actions and influence behaviour.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-12-06
    Description: The uncertainty regarding the capacity of photovoltaics to generate adequate renewable power remains problematic due to very high temperatures in countries experiencing extreme climates. This study analyses the potential of heat pipes as a passive cooling mechanism for solar photovoltaic panels in the Ecohouse of the Higher Colleges of Technology, Oman, using computational fluid dynamics (CFD). A baseline model has been set-up comprised of 20 units, 20 mm diameter water-filled heat pipes, with a length of 992 mm attached to a photovoltaic panel measuring 1956 mm × 992 mm. Using the source temperature of 64.5 °C (337.65 K), the findings of this work have established that a temperature reduction in the range of up to 9 °C is achievable when integrating heat pipes into photovoltaic panels. An optimum spacing of 50 mm (2.5 times the diameter of the heat pipe) was determined through this work, which is also a proof-of-concept towards the use of heat pipe technology for passive cooling of photovoltaic panels in hot climates.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-10-10
    Description: Computation of view factors is required in several building engineering applications where radiative exchange takes place between surfaces such as ground and vertical walls or ground and sloping thermal or photovoltaics collectors. In this paper, view factor computations are performed for bifacial solar photovoltaic (PV) collectors based on the finite element method (FEM) using two programming languages known as Microsoft Excel-Visual Basic for Applications (VBA) and Python. The aim is to determine the computer response time as well as the performance of the two languages in terms of accuracy and convergence of the numerical solution. To run the simulations in Python, an open source just-in-time (JIT) compiler called Numba was used and the same program was also run as a macro in VBA. It was observed that the simulation response time significantly decreased in Python when compared to VBA. This decrease in time was due to the increase in the total number of iterations from 400 million to 250 billion for a given case. Results demonstrated that Python was 71–180 times faster than VBA and, therefore, offers a better programming platform for the view factor analysis and modelling of bifacial solar PV where computation time is a significant modelling challenge.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...