ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1751-908X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: New glass reference materials GSA-1G, GSC-1G, GSD-1G and GSE-1G have been characterised using a prototype solid state laser ablation system capable of producing wavelengths of 193 nm, 213 nm and 266 nm. This system allowed comparison of the effects of different laser wavelengths under nearly identical ablation and ICP operating conditions. The wavelengths 213 nm and 266 nm were also used at higher energy densities to evaluate the influence of energy density on quantitative analysis. In addition, the glass reference materials were analysed using commercially available 266 nm Nd:YAG and 193 nm ArF excimer lasers. Laser ablation analysis was carried out using both single spot and scanning mode ablation. Using laser ablation ICP-MS, concentrations of fifty-eight elements were determined with external calibration to the NIST SRM 610 glass reference material. Instead of applying the more common internal standardisation procedure, the total concentration of all element oxide concentrations was normalised to 100%. Major element concentrations were compared with those determined by electron microprobe. In addition to NIST SRM 610 for external calibration, USGS BCR-2G was used as a more closely matrix-matched reference material in order to compare the effect of matrix-matched and non matrix-matched calibration on quantitative analysis. The results show that the various laser wavelengths and energy densities applied produced similar results, with the exception of scanning mode ablation at 266 nm without matrix-matched calibration where deviations up to 60% from the average were found. However, results acquired using a scanning mode with a matrix-matched calibration agreed with results obtained by spot analysis. The increased abundance of large particles produced when using a scanning ablation mode with NIST SRM 610, is responsible for elemental fractionation effects caused by incomplete vaporisation of large particles in the ICP.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-06-30
    Description: We document that the reliability of carbonate U–Pb dating by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is improved by matching the aspect ratio of the LA single-hole drilling craters and propagating long-term excess variance and systematic uncertainties. We investigated the impact of different matrices and ablation crater geometries using U–Pb isotope analyses of one primary (WC-1) and two secondary reference materials (RMs). Validation RMs (VRMs) include a previously characterised one (ASH-15D) and a new candidate (JT), characterised by ID-TIMS (intercept age: 13.797±0.031 Ma) with excellent agreement to pooled LA-ICP-MS measurements (13.75±0.11 | 0.36 Ma), a U concentration of approx. 1 µg g−1 and 238U∕206Pb ratios from 5 to 460, defining the isochron well. Differences in ablation crater depth to diameter ratios (aspect ratio) introduce an offset due to downhole fractionation and/or matrix effects. This effect can be observed either when the crater size between U–Pb RM and the sample changes or when the ablation rate for the sample is different than for the RM. Observed deviations are up to 20 % of the final intercept age depending on the degree of crater geometry mismatch. The long-term excess uncertainty was calculated to be in the range of 2 % (ASH-15D) to 2.5 % (JT), and we recommend propagating this uncertainty into the uncertainty of the final results. Additionally, a systematic offset to the ID-TIMS age of 2 %–3 % was observed for ASH-15D but not for JT. This offset might be due to different ablation rates of ASH-15D compared to the primary RM or remaining matrix effects, even when the aspect ratios chosen are similar.
    Print ISSN: 2628-3697
    Electronic ISSN: 2628-3719
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-03-01
    Description: The giant Bingham Canyon porphyry Cu-Mo-Au deposit (Utah) is associated with Eocene subvolcanic intrusions. It shows a distinct metal zonation above a barren core, with dominantly shallow Cu-Au mineralization (Cu stage) following the early quartz monzonite porphyry (QMP) intrusion, and spatially deeper Mo mineralization (Mo stage) occurring in a separate vein set exclusively after a late quartz latite porphyry (QLP) intrusion that truncates earlier Cu-Au veins. To understand this metal separation and the geochemical process of molybdenite mineralization, we investigated fluid inclusions by microthermometry, Raman spectroscopy, and laser ablation inductively couple plasma mass spectrometry (LA-ICP-MS) microanalysis in low- and high-grade quartz veins of both mineralization stages.In deep, low-grade quartz veins interpreted to represent the root zone of the Cu stage we found high concentrations of Cu, S, and Mo in the fluid inclusions, whereas in low-grade Mo-stage veins, we found lower Cu, but similar concentrations of S and Mo, compared to the inferred input fluids to the Cu stage. Sulfur and copper concentrations were similar in intermediate-density-type fluid inclusions in deep low-grade Cu-stage samples, whereas intermediate-density-type inclusions in low-grade Mo-stage veins have S contents that exceed their Cu contents. In high-grade Mo-stage vein, we found large variations of Mo concentrations in coexisting brine and vapor inclusions. Compared to the P-T conditions of the Cu precipitation stage (90–260 bars and 320°–430°C), the Mo-precipitating fluids were trapped at higher pressures and temperatures of 140 to 710 bars and 360° to 580°C. Mass-balance calculation based on the compositions of intermediate-density inclusions and brine + vapor assemblages, interpreted to be derived by phase separation during decompression of the ascending single-phase intermediate-density fluid, indicate that the mass of vapor phase exceeded that of brine by about 9:1 in both mineralization stages. Combining this mass balance with the analyzed vapor/brine partitioning data indicates that more than 70% of Mo and S (by mass) in the deposit were deposited from the vapor phase. Earlier Cu-Au deposition was similarly dominated by vapor, but recently published data about postentrapment Cu diffusion in and out of fluid inclusions cast doubt on previous quantifications, suggesting that almost none of the copper was deposited by brine.Mo is less likely to be modified by selective diffusion, and high Mo contents (max 0.0054 Mo/Na in intermediate density; 380 µg/g Mo in brine) in the hydrothermal fluids were maintained from the early Cu stage to the late Mo stage. This indicates that Mo concentration was not the decisive factor for separate precipitation of late Mo ore at Bingham Canyon. Instead, the metal separation may be explained by a reduction in redox potential and an increase in acidity in the evolving source region of the fluids, i.e., a large subvolcanic magma reservoir. This is indicated by the stoichiometry of chalcopyrite and molybdenite precipitation reactions, a tentative difference in the Fe/Mn ratio in fluids of both veining stages, incipient muscovite alteration along high-temperature molybdenite veins, and an increasing tendency for Mo to fractionate from brine to vapor. We suggest that the early Cu-stage fluids were slightly more oxidized and neutral, allowing Cu-Fe sulfides to saturate first, while molybdenite saturation was suppressed and Mo was lost from the early ore stage. By contrast during the later Mo stage, the fluids were more reduced and acidic, thereby allowing selective saturation of molybdenite as the first precipitating sulfide in the cooling and expanding two-phase fluid, consistent with textural observations. This interpretation may imply more generally that small differences in redox potential and acid/base balance of the magmatic source of porphyry-mineralizing systems may be decisive in the temporal and spatial separation of the two metals.
    Print ISSN: 0361-0128
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-01-01
    Description: The major and trace element geochemistry of silicate melt inclusions was investigated within late Paleozoic felsic rhyolites from the Piskahegan and Harvey Formations of southern New Brunswick, Canada, in order to provide further insight into the genetic history of the volcanic- and caldera-related U mineralization that occurs in the region. Glassy melt inclusions analyzed by laser ablation-inductively coupled plasma-mass spectrometer (LA-ICP-MS) and electron microprobe show enrichment in most incompatible trace elements, but a marked depletion in Ba, Sr, and Eu compared to whole rock. At Harvey, melt trapped in early quartz phenocrysts ("preeruptive" inclusions) and in late quartz aggregates ("syneruptive" inclusions) within the groundmass of the rhyolites was significantly more fractionated than melt trapped in quartz phenocrysts at Piskahegan. Fractionation was associated with the crystallization of feldspar and resulted in progressive enrichment of the melt in U, Th, B, LILE, LREE, and other metals, as well as an increase in the U/Th ratio of the melt. A higher degree of melt fractionation, combined with postmagmatic leaching, may have been prerequisites for mineralization at Harvey. Because felsic volcanic rocks are highly susceptible to alteration, melt inclusion analysis may be the only method capable of providing constraints on melt chemistry and evolution in such ancient volcanic terrains. This may enable the evaluation of the economic potential of such terrains if the initial U and Th concentration, as well as the U/Th ratio of the volcanic products, affect the ultimate mineralizing potential of the system.
    Print ISSN: 0361-0128
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Publication Date: 2011-08-01
    Description: At the Mount Milligan Cu-Au porphyry deposit, Quesnel terrane, British Columbia, Canada, barren and weakly mineralized, late-stage hydrothermal veins occur in volcanic rocks adjacent to zones of Cu-Au porphyry mineralization, and have overprinted the porphyry-stage veins. The earliest of the late-stage hydrothermal veins are barren and consist of quartz {+/-} pyrite {+/-} carbonate {+/-} chlorite {+/-} tourmaline. These veins are similar to "transitional" to late-stage hydrothermal veins in other alkaline porphyry Cu-Au deposits, and we consider these to be the equivalent of transitional (post-porphyry, pre-epithermal) quartz-sericite-pyrite veins in calc-alkaline porphyry environments. A later generation of volumetrically minor, mineralized veins are composed of pyrite (Hg- and As-bearing) {+/-} quartz {+/-} carbonate {+/-} chlorite and contain early electrum, arsenopyrite, tetra-hedrite-tennantite, platinum-group element (PGE) tellurides, galena, sphalerite, barite, and chalcopyrite as inclusions in pyrite, and a later assemblage of electrum, PGE tellurides, arsenides and antimonides, galena, sphalerite, chalcopyrite, and various Au-Ag-Te-Bi minerals in annealed fractures and open-space infillings in quartz and pyrite. Metal precipitation in these veins was temporally and spatially associated with the deposition and later recrystallization of pyrite. Primary fluid inclusions in quartz in the barren and weakly mineralized veins are two-phase (L+V), homogenize to liquid over a narrow range in T (~170{degrees}-270{degrees}C; n = 96, 12 veins), and show a wide range in salinity (4.2 wt % NaCl equiv to 28.7 wt % CaCl2 equiv) when all samples are considered. However, individual veins show narrow ranges in salinity and homogenization temperature. LA-ICP-MS analyses indicate that the fluids were highly enriched in As (to 2,260 ppm), Sb (to 230 ppm), B (to 5,400 ppm), Au (~1-2 ppm) and Pd (~0.5-1 ppm) but depleted in Cu ( 80 ppm) compared to typical porphyry-stage fluids. Metal ratios in the fluids overlap with bulk rock metal ratios in the mineralized veins. The inclusions are interpreted to contain a contracted magmatic vapor (produced by boiling) that lost Cu during the formation of porphyry stage veins at depth. Fluids show decreasing B, As, Sb, and increasing Sr, Ca, and salinity with time. Stable C, O, and H isotope analyses of vein minerals indicate that mixing of this magmatic fluid with meteoric water was not responsible for metal deposition. Rather, metal precipitation was possibly the result of mixing of the magmatic-derived fluid with a heated saline groundwater. The precious and accessory metal mineralogy of the hydrothermal veins is similar to that found in low- to intermediate-sulfidation epithermal systems. Fluid inclusion microthermometry and chlorite thermometry constrain the approximate formation conditions of the veins between ~200 and 1,500 bars and ~240{degrees} and 280{degrees}C. After the formation of the mineralized veins, circulation of low salinity, metal-depleted fluids occurred. These latest stage fluids may have formed by mixing of the saline magmatic fluid-groundwater hybrid with meteoric water. The results of this study suggest a genetic link between porphyry-stage events and the deposition of Au and PGE in late-stage veins in an alkalic igneous environment. Recognition of hydrothermal processes involving the transport of Au-PGE-As-Sb-Bi-Te-B-rich fluids in the "subepithermal" regimes implies that low-sulfidation epithermal Au deposits may have been present in the shallower parts of the magmatic-hydrothermal complex and that there is potential for the discovery of PGE-rich epithermal veins in less deeply exhumed terranes. On the other hand, the formation of high-grade, low-sulfidation epithermal Au-PGE deposits may be prohibited if porphyry-epithermal transitional fluids precipitate ore metals through mixing with groundwater prior to reaching the level where meteoric water mixing and epithermal boiling normally occur.
    Print ISSN: 0361-0128
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-02-01
    Print ISSN: 1618-2642
    Electronic ISSN: 1618-2650
    Topics: Chemistry and Pharmacology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
  • 10
    Publication Date: 2017-05-01
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...