ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of food science 50 (1985), S. 0 
    ISSN: 1750-3841
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The yeast strain, Candida sp B-22, which has an increased tolerance to untreated neutralized sugarcane bagasse hemicellulose hydrolysate has been isolated by a continuous adaptation-selection technique which allows yeasts to overcome the inhibitory effect of extraneous chemicals in hydrolysate. With this yeast, xylitol is produced from untreated full-strength hydrolysate in a yield of over 85% of the theoretical value. A final xylitol concentration of 94.74 g/L was obtained from 105.35 g/L D-xylose in hemicellulose hydrolysate after 96 hr of incubation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 25 (1986), S. 208-212 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary The induction of yeast cell aggregates in a column reactor was initiated by packing yeast cell paste of Saccharomyces uvarum into the column, and then YMP broth was fed into the column from the bottom at a linear flow rate of 2.5 cm/h. Thereafter, yeast cells aggregated in the column within 48 h without a supply of oxygen. When this yeast aggregate column reactor was used for continuous ethanol production, a final ethanol concentration of 10.8% (w/v) was obtained from 23% (w/v) of glucose in a YMP broth with a dilution rate of 0.05 h-1, and 4.9% (w/v) was obtained from 10% (w/v) of glucose with a dilution rate of 0.6 h-1. The theoretical yield was above 97% in both cases. The ethanol production rates were 13 g1 h-1 l-1 and 90 g1 h-1 l-1 for producing 10.8% (w/v) and 4.9% (w/v) of ethanol respectively. This column reactor was maintained at a steady state for more than one month.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 21 (1979), S. 167-171 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Endoglucanase (Cx cellulase) and cellobiase are often cross-contaminated in separation procedures by ion-exchange chromatography such as DEAE-cellulose. By using concanavalin A (Con A)-agarose chromatography, Cx cellulase and cellobiase from Trichoderma viride can be separated. Cx cellulase showed affinity toward Con A, indicating a glycoprotein containing α-D-mannopyransyl and α-D-glucopyranosyl end groups or internal 2-O-D-mannopyranosyl residues in sugar moieties. This method provides a way to estimate the quantities of Cx enzyme produced by T. viride and possibly by other organisms.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 22 (1980), S. 1107-1126 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Glucanohydrolase from Trichoderma reesei, having a molecular weight of 52,000, was evaluated for kinetic properties with respect to cellobiose. Results from this work include: (1) initial rate studies that show that glucanohydrolase hydrolyzes cellobiose by a competitive mechanism and that the product, glucose, inhibits the enzyme; (2) low-pressure aqueous liquid chromatography that shows that formation of a reversion product, cellobiose, is minor and occurs in detectable amounts only a very high (90mM) cellobiose concentrations; (3) development of an equation based on the mechanism of glucanohydrolase action as determined by initial rate kinetics, which accurately predicts the time course of cellobiose hydrolysis; (4) derivation of an initial rate expression for the combined activity of cellobiase and glucanohydrolase on cellobiose. Based on data in this paper it is shown that the difference in inhibition pattern of the two enzymes could be used for determining the contamination of one enzyme by small quantities of the other.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 22 (1980), S. 2305-2320 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The kinetics of the hydrolyses of cellotriose and of cellotetraose by cellobiohydrolase were studied using a convenient integral technique. Reaction mechanisms and mathematical models were postulated to describe the reactions. The end-products of the reaction were found to be inhibitory toward hydrolysis in a competitive mode. Hydrolysis of cellotetraose produces cellobiose and hydrolysis of cellotriose produces cellobiose and glucose. Both sugars inhibit the enzyme with cellobiose being a stronger inhibitor.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 19 (1977), S. 959-981 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Three distinct cellobiase components were isolated from a commercial Trichoderma viride cellulase preparation by repeated chromatography on DEAE cellulose eluting by a salt gradient. The purified cellobiase preparations were evaluated for physical properties, kinetics, and mechanism. Results from this work include: (1) development of a one step enzyme purification procedure using DEAE-cellulose; (2) isolation of three chromatographically distinct, yet kinetically similar, cellobiase fractions of molecular weight of ∼76,000; (3) determination of kinetics which shows that cellobiase hydrolyzes cellobiose by a noncompetitive mechanism and that the product, glucose, inhibits the enzyme, and (4) development of an equation, based on the mechanism of cellobiase action, which accurately predicts the time course of cellobiose hydrolysis over an eightfold range of substrate concentration and conversions of up to 90%. Based on the data presented in the paper, it is shown that product inhibition of cellobiase significantly retards the rate of cellobiose hydrolysis.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 22 (1980), S. 833-845 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Actinoplanes missouriensis produces an intracellular soluble glucose Isomerase. The soluble enzyme can be purified by a DEAE-cellulose beads columm with a onestep salt elution. The purified enyzme exhibited a molecular weight of approximately 80,000 daltons, being composed of two identical subunits of about 42,000 daltons each. The Km for glucose is 1.33M, the Km for frucotse is 1.67M. The enzyme has an optimal pH of 7.0. The presence of the cobalt ion is not required to produce optimal activity of the enzyme if the proper amount of magnesium is present.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 25 (1983), S. 85-102 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The utilization and conversion of D-xylose, D-xylulose, L-arabinose, and xylitol by yeast strains have been investigated with the following results: (1) The majority of yeasts tested utilize D-xylose and produce polyols, ethanol, and organic acids. The type and amount of products formed varies with the yeast strains used. The most commonly detected product is xylitol. (2)The majority of yeasts tested utilize D-xylulose aerobically and fermentatively to produce ethanol, xylitol, D-arabitol, and organic acids. The type and amount of products varies depending upon the yeast strains used. (3) Xylitol is a poor carbon and energy source for most yeasts tested. Some yeast strains produce small amounts of ethanol from xylitol. (4) Most yeast strains utilize L-arabinose, and L-arabitol is the common product. Small amounts of ethanol are also produced by some yeast strains. (5) Of the four substrates examined, D-xylulose was the perferred substrate, followed by D-xylose, L-arabinose, and xylitol. (6) Mutant yeast strains that exhibit different metabolic product patterns can be induced and isolated from Candida sp. Saccharomyces cerevisiae, and other yeasts. These mutant strains can be used for ethanol production from D-xylose as well as for the study of metabolic regulation of pentose utilization in yeasts.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 24 (1982), S. 317-328 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Sucrose phosphorylase was immobilized on porous ceramic beads with 3-aminopropyltriethoxysilane and glutaraldehyde. It was determined experimentally that under laboratory conditions there was no diffusional resistance to the enzyme-catalyzed reaction. The half-life of the immobilized enzyme varied from about 35 days at 30°C to about 5 days at 40°C. The pH optimum was found to be between 6.5 and 7.0. The activation energy for the reaction was found to be about 12.5 kcal/mol. Eleven independent kinetic constants in the complete rate equation for the previously proposed ping-pong mechanism were found to be in good agreement with those for the soluble enzyme.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1986-12-01
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...