ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-10-17
    Description: The increasing attention paid to the environment has led to a reduction in the emissions from wastewater treatment plants (WWTPs). Moreover, the increasing interest in the greenhouse gas (GHG) emissions from WWTPs suggests that we reconsider the traditional tools used for designing and managing WWTPs. Indeed, nitrous oxide, carbon dioxide and methane can be emitted from wastewater treatment, significantly contributing to the greenhouse gas (GHG) footprint. The reduction of energy consumption as well as GHG emission are of particular concern for large WWTPs which treat the majority of wastewater in terms of both volume and pollution load. Nowadays, there is an increasing need to develop new tools that include additional performance indicators related to GHG emissions and energy consumption as well as traditional effluent quality parameters. Energy consumption, in fact, can be considered as an indirect source of GHGs. This paper presents the development of an ongoing research project aiming at setting-up an innovative mathematical model platform for the design and management of WWTPs. The final goal of the project by means of this platform is to minimize the environmental impact of WWTPs through their optimization in terms of energy consumptions and emissions, which can be regarded as discharged pollutants, sludge and GHGs.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-11-26
    Description: In an Anaerobic Digestion (AD) process treating particulate substrates, the size of solids is expected to negatively affect the rate of hydrolysis step and consequently influence the performance of the whole process. To avoid any disadvantage due to size of solids, expensive pre-treatments aimed at disintegrating and solubilizing substrates are commonly conducted prior to AD. This practice is doubtlessly successful, but not always necessary, since some organic substrates, although particulate, once immersed in water, tend to solubilize immediately. This aspect, if properly considered, could result in saving money and time in the AD process, as well as refining the development and calibration of AD mathematical models. The present study is actually aimed at demonstrating, through experiments and mathematical simulations, different results deriving from the AD process performed, under the same operating conditions, on two different substrates, i.e. homemade pasta and carrot batons, having the same particle size, but different chemical composition and texture. Experimental outcomes highlighted the effect of particles size on bio-methane production only from the bio-methanation potential tests (BMP) conducted on carrot batons. Similar results were obtained by mathematical model calibration, i.e., different kinetic constants for differently-sized carrot batons and same kinetic constant for differently-sized homemade pasta solids.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: Rice straw is an abundant and sustainable substrate for anaerobic digestion (AD), but it is often deficient in essential trace elements (TEs) for proper microbial growth and metabolism. A lack of TEs leads to AD imbalances and suboptimal biogas yields. However, the total TE concentration is not a sufficient indicator of the amount of TEs available to the microorganisms. Therefore, this study investigated the degree of bioavailability of iron (Fe) and cobalt (Co) during the AD of rice straw, and correlated it to the biomethane yields and volatile fatty acids (VFAs) produced. When the two TEs were dosed at 205 µg Fe/g TS and 18 µg Co/g TS of rice straw, the biomethane production was approximately 260 mL CH4/g VS, i.e., similar to that obtained when Fe and Co were not added. Despite an increased bioavailable fraction of 23 and 48% for Fe and Co, respectively, after TEs addition, the AD performance was not enhanced. Moreover, VFAs did not exceed 250 mg HAc/L both in the presence and absence of added TEs, confirming no enhancement of the methanogenesis step. Therefore, the bioavailability of Fe and Co was not a limiting factor for the biomethane production at low total VFAs concentration.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-05-26
    Description: ABSTRACT Preoperative chemoradiotherapy (pCRT) followed by surgery is the standard treatment for locally advanced rectal cancer (LARC). However, tumor response to pCRT is not uniform, and there are no effective predictive methods. This study investigated whether specific gene and miRNA expression are associated with tumor response to pCRT. Tissue biopsies were obtained from patients before pCRT and resection. Gene and miRNA expression were analyzed using a one-color microarray technique that compares signatures between responders (R) and non-responders (NR), as measured based on tumor regression grade. Two groups composed of 38 “exploration cohort” and 21 “validation cohort” LARC patients were considered for a total of 32 NR and 27 R patients. In the first cohort, using SAM Two Class analysis, 256 genes and 29 miRNAs that were differentially expressed between the NR and R patients were identified. The anti-correlation analysis showed that the same 8 miRNA interacted with different networks of transcripts. The miR-630 appeared only with the NR patients and was anti-correlated with a single transcript: RAB5B . After PAM, the following 8 transcripts were strong predictors of tumor response: TMEM188 , ITGA2 , NRG , TRAM1 , BCL2L13 , MYO1B , KLF7 and GTSE1 . Using this gene set, an unsupervised cluster analysis was applied to the validation cohort and correctly assigned the patients to the NR or R group with 85.7% accuracy, 90% sensitivity and 82% specificity. All three parameters reached 100% when both cohorts were considered together. In conclusion, gene and miRNA expression profiles may be helpful for predicting response to pCRT in LARC patients. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-03-04
    Description: Energy & Fuels DOI: 10.1021/acs.energyfuels.5b02711
    Print ISSN: 0887-0624
    Electronic ISSN: 1520-5029
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-12-03
    Description: The mobility of selected heavy metals in trace concentrations was investigated in a standard OECD soil irrigated with the effluent of a real municipal wastewater treatment plant. While Cd, Cu and Ni accumulation-migration patterns were mainly influenced by the mobility of colloids generated from soil organic and inorganic matter, Zn mobility was more influenced by the wastewater content of dissolved organic matter and by its salinity. Metal accumulation caused by interaction with colloids resulted in contamination peaks both in different zones of the soil column and in the leaching solution. The release of metals in the leachate was correlated to the contemporary release of silicates from kaolinite and dissolved organic matter, identified through UV absorbance and chemical oxygen demand monitoring. The hypothesized colloidal mobilization was confirmed by spectroscopic studies. The highly heterogeneous complexes of organic and inorganic molecules responsible for metal transport through soil appeared to be structured in highly stable micellar aggregates.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-02-10
    Description: Stormwater runoff is often contaminated by human activities. Stormwater discharge into  water bodies significantly contributes to environmental pollution. The choice of suitable treatment  technologies is dependent on the pollutant concentrations. Wastewater quality indicators such as  biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total suspended solids (TSS),  and total dissolved solids (TDS) give a measure of the main pollutants. The aim of this study is to  provide an indirect methodology for the estimation of the main wastewater quality indicators, based  on some characteristics of the drainage basin. The catchment is seen as a black box: the physical  processes of accumulation, washing, and transport of pollutants are not mathematically described.  Two models deriving from studies on artificial intelligence have been used in this research: Support  Vector Regression (SVR) and Regression Trees (RT). Both the models showed robustness, reliability,  and high generalization capability. However, with reference to coefficient of determination R2 and  root‐mean square error, Support Vector Regression showed a better performance than Regression  Tree in predicting TSS, TDS, and COD. As regards BOD5, the two models showed a comparable  performance. Therefore, the considered machine learning algorithms may be useful for providing  an estimation of the values to be considered for the sizing of the treatment units in absence of direct  measures.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-08-30
    Description: Background: Qualitative alterations or abnormal expression of microRNAs (miRNAs) in colon cancer have mainly been demonstrated in primary tumors. Poorly overlapping sets of oncomiRs, tumor suppressor miRNAs and metastamiRs have been linked with distinct stages in the progression of colorectal cancer. To identify changes in both miRNA and gene expression levels among normal colon mucosa, primary tumor and liver metastasis samples, and to classify miRNAs into functional networks, in this work miRNA and gene expression profiles in 158 samples from 46 patients were analysed. Results: Most changes in miRNA and gene expression levels had already manifested in the primary tumors while these levels were almost stably maintained in the subsequent primary tumor-to-metastasis transition. In addition, comparing normal tissue, tumor and metastasis, we did not observe general impairment or any rise in miRNA biogenesis. While only few mRNAs were found to be differentially expressed between primary colorectal carcinoma and liver metastases, miRNA expression profiles can classify primary tumors and metastases well, including differential expression of miR-10b, miR-210 and miR-708. Of 82 miRNAs that were modulated during tumor progression, 22 were involved in EMT. qRT-PCR confirmed the down-regulation of miR-150 and miR-10b in both primary tumor and metastasis compared to normal mucosa and of miR-146a in metastases compared to primary tumor. The upregulation of miR-201 in metastasis compared both with normal and primary tumour was also confirmed. A preliminary survival analysis considering differentially expressed miRNAs suggested a possible link between miR-10b expression in metastasis and patient survival. By integrating miRNA and target gene expression data, we identified a combination of interconnected miRNAs, which are organized into sub-networks, including several regulatory relationships with differentially expressed genes. Key regulatory interactions were validated experimentally. Specific mixed circuits involving miRNAs and transcription factors were identified and deserve further investigation. The suppressor activity of miR-182 on ENTPD5 gene was identified for the first time and confirmed in an independent set of samples. Conclusions: Using a large dataset of CRC miRNA and gene expression profiles, we describe the interplay of miRNA groups in regulating gene expression, which in turn affects modulated pathways that are important for tumor development.
    Electronic ISSN: 1471-2164
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-05-11
    Description: Solid-liquid extraction (adsorption or ion exchange) is a promising approach for the in situ separation of organic acids from fermentation broths. In this study, a diluted concentration of lactic acid (〈10 g/L) separation from a model fermentation broth by granular activated carbon (GAC) as well as weak (Reillex® 425 or RLX425) and strong (Amberlite® IRA-400 or AMB400) base anion exchange resins under various operating conditions was experimentally investigated. Thermodynamic analysis showed that the best lactic acid adsorption performances were obtained at a pH below the pKa value of lactic acid (i.e., 3.86) for GAC and RLX425 by physical adsorption mechanism and above the pKa value for the AMB400 resin by an ion exchange mechanism, respectively. The adsorption capacity for GAC (38.2 mg/g) was the highest, followed by AMB400 (31.2 mg/g) and RLX425 (17.2 mg/g). As per the thermodynamic analysis, the lactic acid adsorbed onto GAC and RLX425 through a physical adsorption mechanism, whereas the lactic acid adsorbed onto AMB400 with an ion exchange mechanism. The Langmuir adsorption isotherm model (R2 > 0.96) and the pseudo-second order kinetic model (R2 ~ 1) fitted better to the experimental data than the other models tested. Postulating the conditions for the real fermentation broth (pH: 5.0–6.5 and temperature: 30–80 °C), the resin AMB400 represents an ideal candidate for the extraction of lactic acid during fermentation.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-12-20
    Description: Anaerobic digestion (AD) is a naturally-occurring biological process in soils, sediments, ruminants, and several other anoxic environments, that cycles carbon and other nutrients, and converts organic matter into a methane-rich gas. As a biotechnology, AD is now well-established for the treatment of the organic fraction of various waste materials, including wastewaters, but is also increasingly applied for an expanding range of organic feedstocks suitable for biological conversion to biogas. AD applications are classified in various ways, including on the basis of bioreactor design; and operating parameters, such as retention time, temperature, pH, total solids (TS) and volatile solids (VS) contents, and biodegradability of substrates. AD is an attractive bioenergy and waste / wastewater treatment technology. The advantages of AD for waste treatment include: production of a useable fuel (biogas/methane); possibility of high organic loading; reduced carbon footprint; and suitability for integration into a wide variety of process configurations and scales. Specifically, two important, and developing, applications exemplify the potential of AD technologies: (1) the integration of AD as the basis of the core technologies underpinning municipal wastewater, and sewage, treatment, to displace less sustainable, and more energy-intensive, aerobic biological treatment systems in urban water infrastructures; and (2) technical innovations for higher-rate conversions of high-solids wastestreams, and feedstocks, for the production of energy carriers (i.e. methane-biogas, but possibly also biohydrogen) and other industrially-relevant intermediates, such as organic acids. Internationally, the research effort to maximize AD biogas yield has increased ten-fold over the past decade. Depending on the feedstocks, bioreactor design and process parameters, fundamental and applied knowledge are still required to improve conversion rates and biogas yields. This Research Topic cover aspects related to AD processes, such as the effect of feedstock composition, as well as the effect of feedstock pre-treatment, bioreactor design and operating modes, on process efficiency; microbial community dynamics and systems biology; influence of macro- and micro-nutrient concentrations and availability; process control; upgrading and calibration of anaerobic digestion models (e.g. ADM1) considering the biochemical routes as well as the hydrodynamics in such ecosystems; and novel approaches to process monitoring, such as the development, and application, of novel, and rapid diagnostic assays, including those based on molecular microbiology. Detailed full-scale application studies were also particularly welcomed.
    Keywords: GE1-350 ; TA1-2040 ; TP248.13-248.65 ; QR1-502 ; Q1-390 ; Wastewater treatment technology ; Anaerobic digestion (AD) ; bic Book Industry Communication::K Economics, finance, business & management::KC Economics::KCN Environmental economics
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...