ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 379 (1996), S. 624-627 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The neodymium isotope record of juvenile, mantle-derived rocks is quite well documented12'13. In general terms, the record of the highest £Nd values4'13'14 can be described in three main segments (Fig. 1): (1) a nearly linear increase from about 2.5 Gyr ago to the present; (2) an essentially ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-29
    Description: Detrital zircons with ages of 535 ± 10 Ma in many North American Midcontinent sandstones are commonly attributed to sources in Cambrian synrift igneous rocks along the Southern Oklahoma fault system. New analyses are designed to test the characteristics of proximal detritus from the Wichita and Arbuckle uplifts. Detrital zircons from a sandstone (Lower Permian Post Oak Conglomerate) directly above an unconformable contact with the Wichita Granite Group in the Wichita Mountains have strongly unimodal U-Pb ages of 540–520 Ma and Hf t values of +4.7 to +10.1. In contrast, two sandstone samples (Upper Pennsylvanian Vanoss Conglomerate) in the onlapping succession above an angular unconformity on Paleozoic strata on the flank of the Arbuckle anticline have detrital zircons with U-Pb ages that correspond dominantly to the Superior (~2700 Ma) and secondarily to the Granite-Rhyolite (1480–1320 Ma) and Grenville (1300–970 Ma) provinces of the Laurentian craton. The Vanoss zircons indicate recycling from quartzose sandstones within the Middle Ordovician platform carbonates in the Arbuckle passive-margin cover succession. A stratigraphically higher sandstone (Permian Wellington Formation) above the onlapping conglomerates has a more diverse detrital-zircon population, indicating that sediment dispersal from external sources overwhelmed the proximal detritus in the immediate cover of the Wichita and Arbuckle uplifts. The distinctive Hf t values of the proximal detritus from the Cambrian synrift igneous rocks offer potential discrimination from zircons of the same age from Gondwanan accreted terranes, which are represented in the Wellington sample.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-12-30
    Description: The Neruokpuk Formation is a Neoproterozoic and Cambrian turbiditic succession in northwesternmost Yukon (Canada) and northeastern Alaska (USA), part of a latest Proterozoic to Early Devonian slope and basin succession that is correlated in detail with strata in Selwyn Basin of the northern Canadian Cordillera. It includes quartz-lithic sandstone, locally containing altered detrital feldspar and muscovite indicating that a metamorphic source contributed detritus to the unit. The muscovite yields disturbed Ar-Ar spectra suggesting ages of 1800–1900 Ma. Detrital zircon distributions are dominated by 1800–2000 Ma grains with subsidiary populations of 1000–1600 Ma, 2300–2500 Ma and 2600–2800 Ma grains, consistent with a hybrid provenance dominated by a Laurentian cratonic source. Additional populations are derived from recycled Mackenzie Mountains and possibly Wernecke Supergroups. Integrating the geochronology with the regional stratigraphic setting, structural history, and geochemistry leads to the conclusion that the Neruokpuk Formation was deposited near its present location as part of the autochthonous northwest Laurentian continental margin. Therefore, the eastern part of Arctic Alaska, underlain by the Neruokpuk Formation, has a history that is distinct from the allochthonous western part(s) of the Arctic Alaska terrane. However, the rest of Arctic Alaska is structurally and stratigraphically linked to the eastern part by Late Devonian time.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-05-29
    Description: Detrital zircon U-Pb geochronology and Hf isotope geochemistry provide new insights into the provenance, sedimentary transport, and tectonic evolution of the Roberts Mountains allochthon strata of north-central Nevada. Using laser-ablation inductively coupled plasma mass spectrometry, a total of 1151 zircon grains from six Ordovician to Devonian arenite samples were analyzed for U-Pb ages; of these, 228 grains were further analyzed for Hf isotope ratios. Five of the units sampled have similar U-Pb age peaks and Hf isotope ratios, while the ages and ratios of the Ordovician lower Vinini Formation are significantly different. Comparison of our data with that of igneous basement rocks and other sedimentary units supports our interpretation that the lower Vinini Formation originated in the north-central Laurentian craton. The other five units sampled, as well as Ordovician passive margin sandstones of the western Laurentian margin, had a common source in the Peace River Arch region of western Canada. We propose that the Roberts Mountains allochthon strata were deposited near the Peace River Arch region, and subsequently tectonically transported south along the Laurentian margin, from where they were emplaced onto the craton during the Antler orogeny.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-12-03
    Description: Detrital zircon provenance analysis is used to resolve the age of sandstone injectites together with source sandstones that form fault-bounded, tabular bodies within Mesoproterozoic crystalline rocks of the Colorado Front Range. Named Tava sandstone (informal), the unit is a product of liquefaction and remobilization of mature quartz sediment within source bodies having volumes ≥1 x 10 6 m 3 into dikes up to 6 m in width. To surmount the indeterminate age of emplacement, we obtained new U-Pb detrital zircon age data for two source sandstones, three dikes and one sill, for comparison to four Paleozoic arenites. Tava age distributions feature a dominant 1.33–0.97 Ga broad age group and narrow ca. 1.11, 1.44, and 1.70 Ga groups, with several smaller age groups 〉1.5 Ga. The Tava detrital zircon results are dissimilar to Paleozoic sandstones but closely resemble published detrital zircon reference data for Grenville orogen–derived siliciclastic units of the western United States. The similarity in age distributions is borne out by statistical comparisons among Tava sandstone, Paleozoic samples, and Neoproterozoic strata that reveal a high probability of correlation of Tava sandstone to ca. 800–680 Ma strata deposited during intracontinental extension. We conclude that Tava sandstone is Neoproterozoic in age and provides a new avenue to investigation of Rodinia’s terrestrial paleoenvironment.
    Print ISSN: 1941-8264
    Electronic ISSN: 1947-4253
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-10-01
    Description: The Whitehorse trough is an Early to Middle Jurassic marine sedimentary basin that overlaps the Intermontane terranes in the northern Cordillera. Detrital zircon dates from eight Laberge Group sandstones from various parts of the trough all display a major Late Triassic–Early Jurassic peak (220–180 Ma) and a minor peak in the mid-Paleozoic (340–330 Ma), corresponding exactly with known igneous ages from areas surrounding the trough. Source regions generally have Early Jurassic (ca. 200–180 Ma) mica cooling dates, and the petrology of metamorphic rocks and Early Jurassic granitoid plutons flanking the trough suggests rapid exhumation during emplacement. These data suggest that subsidence and coarse clastic sedimentation in the trough occurred concurrently with rapid exhumation of the shoulders. Isolated occurrences of sandstone and conglomerate units with similar detrital zircon signatures occur west and east of the trough, as well as overlapping the Cache Creek terrane, indicating that either the trough was once more extensive, or isolated basins tapped similar sources. Development of these sedimentary basins and accompanying rapid exhumation in the northern Cordillera were coeval with the onset of orogenic activity in the hinterland of the southern Canadian Cordillera, and subsidence in the western Canada foreland sedimentary basin. The Whitehorse trough is interpreted as a forearc basin that progressively evolved into a collisional, synorogenic piggyback basin developed atop the nascent Cordilleran orogen. Upper Jurassic–Lower Cretaceous fluvial deposits overlapping the Whitehorse trough have detrital zircons that were mainly derived from recycling of the Laberge Group, but they also contain zircons exotic to the northern Intermontane terranes that are interpreted to reflect windblown detritus from the Late Jurassic–Early Cretaceous magmatic arc that developed either atop the approaching Insular terranes to the west or southern Stikinia.
    Print ISSN: 1941-8264
    Electronic ISSN: 1947-4253
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-01-20
    Description: The Alexander terrane is an unusual tectonic fragment in the North American Cordillera in that it contains a long and very complete stratigraphic record, including sedimentary or volcanic rocks representing every period and nearly every epoch between Neoproterozoic and Late Triassic time. The terrane is also unusual in that the southern portion of the terrane experienced arc-type magmatism during Neoproterozoic–early Paleozoic time, whereas the northern portion of the terrane consists mainly of Paleozoic shelf-facies strata. This long and diverse history provides opportunities to reconstruct the evolution and displacement history of the terrane, and specifically test the prevailing interpretation that the terrane formed in the paleo-Arctic realm. This study presents U-Pb geochronologic data and Hf isotopic information for detrital zircons from arc-type rocks in the southern portion of the terrane. Information has been generated from seven samples of Ordovician through Devonian age, complementing the information available from previous studies of Ordovician through Triassic strata. Together, these data sets yield a robust record of the magmatic history of the southern Alexander terrane, with dominant age groups of 640–550 Ma, 490–400 Ma, 380–340 Ma, and 310–275 Ma (dominant ages of 579, 441, 361, and 293 Ma). There are few pre–640 Ma grains in any of the samples. Hf isotope compositions of the detrital zircons are exceptionally juvenile, with most epsilon Hf (t) values between +15 and +5. Collectively, the available geologic, U-Pb geochronologic, and Hf isotopic evidence suggests that the southern Alexander terrane formed within a juvenile Neoproterozoic–early Paleozoic arc system, with little continental influence, whereas the northern portion of the terrane formed in proximity to a continental landmass that experienced similar Neoproterozoic–early Paleozoic ages of continental-affinity magmatism. Our data are consistent with previous suggestions that the Alexander terrane resided in the paleo-Arctic realm during early Paleozoic time, with the northern portion of the terrane adjacent to Baltica and the Caledonides, and the southern portion of the terrane forming further offshore as a juvenile north-facing oceanic arc.
    Print ISSN: 1941-8264
    Electronic ISSN: 1947-4253
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-12-02
    Description: For more than 25 yr, the Mazatzal orogeny has been a central component of virtually all tectonic models involving the Proterozoic rocks of the southwestern United States. Recent recognition that some sedimentary sequences and some major structures are Mesoproterozoic rather than Paleoproterozoic has led to new questions about the nature, even the existence, of the Mazatzal orogeny. This study aims to clarify the relationship between Mazatzal (ca. 1.65 Ga) and Picuris (ca. 1.45 Ga) orogenic activity. New U-Pb geochronology of variably deformed igneous and metasedimentary rocks constrains several periods of deformation at ca. 1.68 Ga, 1.66 Ga, and 1.49–1.45 Ga in the Four Peaks area of central Arizona. Detrital zircon analyses and field relationships indicate the deposition of a rhyolite-sandstone-shale assemblage at ca. 1.660 Ga with renewed deposition at 1.502–1.490 Ga and a significant disconformity, but no recognized angular unconformity, between these episodes. Three populations of monazite growth at 1.484 ± 0.003 Ga, 1.467 ± 0.004 Ga, and 1.457 ± 0.005 Ga indicate prolonged Mesoproterozoic metamorphism. The ca. 1.485 Ga population is associated with the formation of the Four Peaks syncline during Mesoproterozoic orogenesis and subsequent amphibolite-facies contact metamorphism. Rocks in the Four Peaks area record polyphase deformation, sedimentation, and plutonism from the Paleoproterozoic to Mesoproterozoic. Hf-isotopic data suggest the involvement of older, nonjuvenile crust. In this area, effects of the Mazatzal (ca. 1.65 Ga) and Picuris orogenies (ca. 1.49–1.45 Ga) are entwined and involved sedimentation, deformation, pluton emplacement, and pluton-enhanced metamorphism.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-12-02
    Description: New detrital zircon U-Pb age distributions from 49 late Cenozoic sandstones and Holocene sands (49 samples, n = 3922) record the arrival of extra-regional early Pliocene Colorado River sediment at Grand Wash (western USA) and downstream locations ca. 5.3 Ma and the subsequent evolution of the river’s provenance signature. We define reference age distributions for the early Pliocene Colorado River (n = 559) and Holocene Colorado River (n = 601). The early Pliocene river is distinguished from the Holocene river by (1) a higher proportion of Yavapai-Mazatzal zircon derived from Rocky Mountain basement uplifts relative to Grenville zircon from Mesozoic supra crustal rocks, and (2) distinctive (~6%) late Eocene–Oligocene (40–23 Ma) zircon reworked from Cenozoic basins and volcanic fields in the southern Rocky Mountains and/or the eastern Green River catchment. Geologic relationships and interpretation of 135 published detrital zircon age distributions throughout the Colorado River catchment provide the interpretative basis for modeling evolution of the provenance signature. Mixture modeling based upon a modified formulation of the Kolmogorov-Smirnov statistic indicate a subtle yet robust change in Colorado River provenance signature over the past 5 m.y. During this interval the contribution from Cenozoic strata decreased from ~75% to 50% while pre-Cretaceous strata increased from ~25% to 50%. We interpret this change to reflect progressive erosional incision into plateau cover strata. Our finding is consistent with geologic and thermochronologic studies that indicate that maximum post–10 Ma erosion of the Colorado River catchment was concentrated across the eastern Utah–western Colorado region.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-01
    Description: U-Pb ages of detrital zircon suites from Paleozoic strata in the Arctic Alaska-Chukotka terrane (AAC), Alexander terrane, northern Sierra terrane, and eastern Klamath terrane of the North American Cordillera suggest an exotic Gondwana or Baltic origin. We evaluate these hypotheses with U-Pb ages of detrital zircon suites from Cambrian-Devonian strata of northern Baltica. Precambrian zircon populations (ca. 0.8-3.0 Ga) from Baltica compare well with similar age detritus in the AAC and Cordilleran terranes, but the amount and age of younger Neoproterozoic and Ordovician-Silurian components are variable. The AAC shares its stratigraphy with Baltica and has the most similar detrital zircon suites. Closing the Arctic places the AAC against the Lomonosov Ridge and the edge of Baltica in pre-Cretaceous time. After the Caledonian orogeny and before the Ural Mountains formed, the Baltica, AAC, and Cordilleran margins shared a Devonian-Carboniferous rift history and became along-strike portions of a Carboniferous-Permian continental margin. This rifting event might have been responsible for the initial separation of Baltica and Caledonian affinity terranes from this margin.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...