ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have determined the origin of the spatial luminescence fluctuations observed between the dark line defects present in tensile strained GaxIn1−xP/InP/n+-InP heterostructures (Part I [F. Cléton et al. J. Appl. Phys. 80, 827 (1996)]). For that purpose, we have undertaken semi-quantitative and spectroscopic cathodoluminescence (CL) measurements on various specimens in areas exhibiting CL contrasts which could be as large as 80%. The analysis of the variation of the CL polychromatic signal with electron beam energy allowed us to get information on the diffusion-recombination (DR) parameters of the areas under study. From the correlation between the local relaxation level of these areas and their DR parameters, we can conclude that the variation of the misfit dislocations density at the GaxIn1−xP/InP interface is at the origin of the luminescence heterogeneities. We also demonstrate that recycling, by the GaxIn1−xP epilayer, of the photons originating from the heavily doped InP substrate, enhances the CL contrast between areas exhibiting different relaxation levels. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 76 (1994), S. 342-346 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In a recent paper we measured the lateral hole diffusion in a GaAs/AlGaAs single quantum well (SQW) by a novel method. At helium temperature, we estimate a lateral hole diffusion length in the QW of 1.5 μm. However, the assumption that diffusion takes place mainly in the SQW needs to be checked, as the measured diffusion length is the result of two competing processes: (i) hole diffusion in the SQW plane itself and (ii) hole diffusion in the barrier followed by recombination in the SQW. We present here a comparison between the lateral hole distribution in the SQW and in the AlGaAs barrier. First, we estimate the hole diffusion length in the barrier fitting experimental cathodoluminescence linescans on simulated ones. Second, using the measured diffusion lengths in the QW plane and in the bulk barrier and modeling the carrier transport, we deduce the lateral hole distribution in both layers. It is found that even for very large barriers (1.2 μm), the hole diffusion in the barrier contributes less than 0.1% of the total lateral hole diffusion. The lateral transport is mainly carried by holes in the QW (2D diffusion) due to their confinement in the well.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have investigated the optical and structural properties of tensile-strained GaxIn1−xP/InP heterojunctions by cathodoluminescence (CL) in the scanning electron microscope and by transmission electron microscopy (TEM). The lattice mismatch of the samples is ranging from 0.4% (x=5.5%) to 0.84% (x=11.8%). We show, in agreement with previous studies, that the relaxation of tensile-strained epilayers occurs by the emission of partial and perfect dislocations. The numerous twins and stacking faults which are found in the epilayers act as efficient recombination centers for electron-hole pairs and appear as dark line defects (DLDs) in CL images. "Ladderlike'' configurations of these defects are found both by TEM and CL in samples with a lattice mismatch larger than 0.5%. We also demonstrate that DLDs are contaminated by impurities. Areas with networks of perfect dislocations are found between the DLDs. The analysis of the dislocation types allows us to suggest that the growth of low-mismatched samples is two dimensional, and that it is three dimensional in highly mismatched samples. Finally, the spatial variations of the strain relaxation throughout the samples are studied by 77-K CL spectroscopic measurements and it is shown that these variations can be correlated with the various types of structural defects. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 79 (1996), S. 4009-4016 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Identical GaAs/Al0.2Ga0.8As multiple-quantum-well (MQW) structures uniformly doped with Si at various concentrations ranging from 1×1017 to 1×1019 cm−3 are grown by molecular-beam epitaxy to study the effects of the background Si-doping level on the Zn diffusion-induced disordering process. After Zn diffusions at 575 °C for 4 and 16 h, the structures are investigated by secondary-ion-mass spectrometry, and by transmission electron microscopy on cleaved wedges of the sample. The results show that the totally and partially disordered regions are always behind the Zn diffusion front. A dependence of the effective Zn diffusivity and of the disordering rate of the structures on the background Si-doping level is observed. The effective Zn diffusivity and the disordering rate are significantly reduced with increasing background Si concentration. Before Zn diffusion, photoluminescence spectra of the Si-doped MQW structures exhibit an increase in intensity of the Si donor–column-III vacancy complex emission band with increasing Si-doping level. This indicates that the concentration of column-III vacancies in the MQW structures increases as the background Si concentration increases. After Zn diffusion, an important decrease in intensity of the column-III vacancy related emission band is observed on the photoluminescence spectra taken in the Zn-diffused regions.The systematical analysis of the photoluminescence spectra of the Zn-diffused MQW structures as a function of diffusion time and as a function of etching depth below the sample surface makes it possible to describe the physical processes occurring during Zn diffusion. A model based on the "kick-out'' mechanism of Zn diffusion is proposed to explain the effect of the background Si-doping level on the effective Zn diffusivity. The model shows that the effective Zn diffusivity is controlled by the concentration of column-III interstitials behind the Zn diffusion front and by the donor concentration in the sample. During the incorporation of Zn into the crystal lattice, column-III interstitials are generated. The supersaturation of these interstitials behind the Zn diffusion front is responsible for the enhancement of Al–Ga interdiffusion. Since column-III interstitials and column-III vacancies can mutually annihilate, the concentration of column-III interstitial and column-III vacancy in the Zn-diffused region is reduced with increasing Si-doping level, leading to a retardation of Zn diffusion into the MQW structure. On the other hand, a decrease of the effective Zn diffusivity caused by an increase in donor concentration in the samples is also demonstrated.Our results give evidence for the Fermi-level effect and the interactions between different point defects during Zn diffusion-induced disordering of GaAs/AlGaAs multilayered structures. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The structural characterization of ZnTe epilayers grown on (100)GaAs by metalorganic vapor-phase epitaxy is reported. A detailed study of the ZnTe/GaAs heterostructure based on both high-resolution and conventional electron microscopy and ion channeling Rutherford backscattering spectrometry allows correlation of the type and spatial distribution of the extended defects occurring at or close to the ZnTe/GaAs interface with the amount of residual lattice strain into the ZnTe epilayers. Both pure edge Lomer and 60°-mixed misfit dislocations were identified at the interface along with partial dislocations bounding stacking faults, their overall density and distance distribution indicating the occurrence of a residual compressive strain at the heterostructure interface. By comparing this interface strain to the corresponding surface value of the same samples the occurrence of an inhomogeneous strain relaxation along the growth direction is clearly demonstrated. It is shown that such a strain gradient should be entirely ascribed to threading dislocations occurring into the ZnTe epilayers, their distribution being strictly correlated to the amount of residual strain along the epilayer growth direction. The conclusions are further supported by the analysis of the ZnTe surface strain, whose dependence on the epilayer thickness is consistent with that expected on the basis of a phenomenological model for the epilayer residual strain relaxation by threading dislocations. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Careful investigation of the reflectivity of two very high finesse integrated Fabry–Perot interferometers is reported. These two structures, made of GaAs active layer (1.7 μm thick) surrounded by two superlattice/AlAs Bragg reflectors, exhibit vertical cw lasing action at and above room temperature when photopumped with thresholds of 16 mW at 300 K and 56 mW at 380 K. Reflectivity measurements together with theoretical calculations show that layer regularity, accurate thickness control, and low interface roughness are key parameters for high-performance structures. Transmission electron microscopy on cleaved wedges and reflection electron microscopy are shown to be unique tools for measuring and characterizing these layers. Electron microscopy, optical reflection, and laser linewidth measurements are correlated and show that the layer flatness is dramatically increased by the introduction of six (2.5 A(ring)) GaAs wells in the AlAs growth of the integrated dielectric reflectors. Reflectives of 97%, Fabry–Perot finesse as high as 100 (61 for direct measurements), and laser linewidths as small as 1.2 A(ring) are reported.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 86 (1999), S. 259-266 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The effects of background n- and p-type doping on Zn diffusion in GaAs/AlGaAs multilayered structures are investigated by secondary-ion-mass spectrometry and photoluminescence measurements. Zn diffusions are performed at 575 °C into Si-doped, Be-doped, and Si/Be-codoped identical GaAs/Al0.2Ga0.8As multiple-quantum-well structures. The results obtained by secondary-ion-mass spectrometry show that the Zn diffusion induces an enhancement of Be out-diffusion and the disordering of all structures. The effective Zn diffusivity and the disordering rate are increased by Be doping and reduced by Si doping. Photoluminescence measurements give information about the reactions of different point defects during the diffusion process. Before Zn diffusion, the Si-doped structures contain a high concentration of column-III vacancies, whereas As vacancies are the dominant defects in the Be-doped structures. After Zn diffusion, we observe a reduction of column-III vacancy concentration in Si-doped structures and an increase of column-III interstitial concentration in Be-doped structures. A model based on the "kick-out" mechanism of Zn diffusion is proposed to explain our observations. The supersaturation of column-III interstitials behind the Zn diffusion front is responsible for the enhancements of Al–Ga interdiffusion and Be out-diffusion. The effective Zn diffusivity is controlled by the background donor or acceptor concentration ahead of the Zn diffusion front and by the concentration of column-III interstitials behind the Zn diffusion front. For Be-doped structures, the increase in the background acceptor concentration and the supersaturation of column-III interstitials in the Zn-diffused region results in an enhancement of the Zn diffusivity. For Si-doped structures, the effective Zn diffusivity decreases with increasing background donor concentration. Moreover, the concentrations of column-III interstitials and column-III vacancies in the Zn-diffused region are reduced due to their mutual annihilation, leading to a retardation of Zn diffusion. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The mechanism of silicon diffusion in GaAs, Al0.3Ga0.7As, and the silicon diffusion-induced layer disordering of multiquantum wells have been studied by photoluminescence, secondary-ion-mass spectroscopy, and transmission electron microscopy across a corner of a wedge-shaped sample. The diffusion source was a grown in highly Si-doped layer. The main photoluminescence properties of point defects in GaAs and Al0.3Ga0.7As are reviewed to interpret the experimental data. The depth profile of the photoluminescence allows the spatial correlation between the luminescence spectra and the Si concentration profile obtained from secondary-ion-mass-spectroscopy measurements. On the basis of the photoluminescence results, the physical processes occurring during the Si diffusion are discussed. Frenkel defects (pairs of element-III vacancies and interstitials) are generated in the highly Si-doped region. The element-III interstitials rapidly diffuse towards the surface where they react with the element-III vacancies generated at the surface when annealing is performed in an external As pressure. This induces a supersaturation of element-III vacancies in the Si-doped region which drives the Si diffusion. Annealing in vacuum reduces the oversaturation of element-III vacancies and, hence, reduces the Si diffusion. A domination of the Si donor–element-III vacancy complex emission band was found in the spectra taken in the Si-diffused region. This gives evidence for the vacancy-assisted mechanism in the Si diffusion and in the impurity-induced disordering.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: GaAs/AlxGa1−xAs multiple-quantum-well (MQW) structures with identical well thicknesses but with different Al contents x in the barrier (x≈0.1, 0.2, 0.45, and 1) were grown by molecular-beam epitaxy to study the impurity-induced disordering mechanism. The disordering of the structures is observed directly by transmission electron microscopy on cleaved wedges of the sample, by the secondary electron imaging mode of scanning electron microscopy, and by secondary-ion-mass spectroscopy after Zn diffusions at 575 °C during different times (1, 4, 9, and 16 h). The results show that the totally and partially disordered regions are always behind the Zn diffusion front. The partially disordered extent depends on x. As x increases, the disordering rate increases due to the increase in Zn diffusivity. The effect of high Zn concentration is investigated by photoluminescence and by Raman scattering measurements. The systematical analysis of the photoluminescence spectra of the MQW structures diffused for different times and of the photoluminescence spectra taken on different depths below the sample surface makes it possible to describe the physical processes occurring during Zn diffusion. The column-III vacancies are created at the sample surface. They diffuse into the bulk of the sample where they are filled by other defects. Using the x-ray-diffraction technique, an expansion of the lattice constant in the region behind the Zn diffusion front was observed. This is due to a supersaturation of column-III interstitials. During the incorporation of Zn into the crystal lattice, column-III interstitials are generated. These interstitials could be responsible for the enhancement of the Al-Ga interdiffusion. The important role of the electric field at the p-n junction formed by Zn diffusion is discussed. The negatively charged column-III vacancies and the positively charged column-III interstitials are confined, respectively, on the n and p sides of the p-n junction. The results give evidence for the self-interstitial mechanism of Zn diffusion-induced disordering in GaAs/AlGaAs MQW structures.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...