ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Monograph available for loan
    Monograph available for loan
    Cambridge : Cambridge University Press
    Call number: AWI G3-11-0064
    Description / Table of Contents: This is the first textbook to address all the components of the Earth's cryosphere - all forms of snow and ice, both terrestrial and marine. It provides a concise but comprehensive summary of snow cover, glaciers, ice sheets, lake and river ice, permafrost, sea ice and icebergs - their past history and projected future state. It is designed for courses at upper undergraduate and graduate level in environmental science, geography, geology, glaciology, hydrology, water resource engineering and ocean sciences. It also provides a superb up-to-date summary for researchers of the cryosphere. The book includes an extensive bibliography, numerous figures and color plates, thematic boxes on selected topics and a glossary. The book builds on courses taught by the authors for many decades at the University of Colorado and the University of Alberta. Whilst there are many existing texts on individual components of the cryosphere, no other textbook covers the whole cryosphere.
    Type of Medium: Monograph available for loan
    Pages: XV, 472 Seiten , Illustrationen , 25x19x2 cm
    Edition: First published
    ISBN: 9780521156851
    Language: English
    Note: Contents Preface Ackowledgements 1 Introduction 1.1 Definition and extent 1.2 The role of the cryosphere in the climate system 1.3 The organization of cryospheric observations and research 1.4 Remote sensing of the cryosphere Part I The terrestrial cryosphere 2A Snowfall and snow cover 2.1 History 2.2 Snow formation 2.3 Snow cover 2.4 Snow cover modeling in land surface schemes of GCMs 2.5 Snow interception by the canopy 2.6 Sublimation 2.7 Snow metamorphism 2.8 In situ measurements of snow 2.9 Remote sensing of snowpack properties and snow-cover area 2.10 Snowmelt modeling 2.11 Recent observed snow cover changes 2B Avalanches 2.12 History 2.13 Avalanche characteristics 2.14 Avalanche models 2.15 Trends' in avalanchf:' conditions 3 Glaciers and ice caps 3.1 History 3.2 Definitions 3.3 Glacier characteristics 3.4 Mass balance 3.5 Remote sensing 3.6 Glacier flow and flowlines 3.7 Scaling 3.8 Glacier modeling 3.9 Ice caps 3.10 Glacier hydrology 3.11 Changes in glaciers and ice caps 4 Ice sheets 4.1 History of exploration 4.2 Mass balance 4.3 Remote sensing 4.4 Mechanisms of ice sheet changes 4.5 The Greenland Ice Sheet 4.6 Antarctica 4.7 Overall ice sheet changes 4.8 Ice sheet models 4.9 Ice sheet and ice shelf interaction 4.10 Ice sheet contributions to sea level change 5 Frozen ground and permafrost 5.1 History 5.2 Frozen ground definitions and extent 5.3 Thermal relationships 5.4 Vertical characteristics of permafrost 5.5 Remote sensing 5.6 Ground ice 5.7 Permafrost models 5.8 Geomorphological features associated with permafrost 5.9 Changes in permafrost and soil freezing 6 Freshwater ice 6.1 History 6.2 Lake ice 6.3 Changes in lake ice cover 6.4 River ice 6.5 Trends in river ice cover 6.6 Icings Part II The marine cryosphere 7 Sea ice 7.1 History 7.2 Sea ice characteristics 7.3 Ice drift and ocean circulation 7.4 Sea ice models 7.5 Leads, polynyas, and pressure ridges 7.6 Ice thickness 7.7 Trends in sea ice extent and thickness 8 Ice shelves and icebergs 8.1 History 8.2 Ice shelves 8.3 Ice streams 8.4 Conditions beneath ice shelves 8.5 Ice shelf buttressing 8.6 Icebergs 8.7 Ice islands Part Ill The cryosphere past and future 9 The cryosphere in the past 9.1 Introduction 9.2 Snowball Earth and ice-free Cretaceous 9.3 Phanerozoic glaciations 9.4 Late Cenozoic polar glaciations 9.5 The Quaternary 9.6 The Holocene 10 The future cryosphere: impacts of global warming 10.1 Introduction 10.2 General observations 10.3 Recent cryospheric changes 10.4 Climate projections 10.5 Projected changes to Northern Hemisphere snow cover 10.6 Projected changes in land ice 10.7 Projected permafrost changes 10.8 Projected changes in freshwater ice 10.9 Projected sea ice changes Part IV Applications 11 Applications of snow and ice research 11.1 Snowfall 11.2 Freezing precipitation 11.3 Avalanches 11.4 Ice avalanches 11.5 Winter sports industry 11.6 Water resources 11.7 Hydropower 11.8 Snow melt floods 11.9 Freshwater ice 11.10 Ice roads 11.11 Sea ice 11.12 Glaciers and ice sheets 11.13 Icebergs 11.14 Permafrost and ground ice I 1.15 Seasonal ground freezing Glossary References Index
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Water resources management 14 (2000), S. 111-135 
    ISSN: 1573-1650
    Keywords: Canadian Prairies ; climate anomalies ; climatic warming ; drought ; hydroclimatic trends ; strategic adaptation of water resources ; vulnerability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: Abstract Past and the present studies show that the Canadian Prairies havebecome warmer and may have been drier in the last four to five decadesbut the drying trends are scattered and inconclusive.Statistical analysis shows that only the Winter and Fall (insome instances) precipitation is marginally related to ENSO andthe PNA (Pacific North Americ) Index, and streamflow is highlyvariable. With uncertainties on the potential impact of climaticchange and other uncertainties, several strategies are proposedto reduce the vulnerability of the Prairies to future droughts,where surface water is the primary water supply and agricultureis the major water user: (1) Continue implementing small-scalewater resources projects and increase water storage through snowmanagement, (2) increase integration between existing waterresources systems, and (3) promote water conservation measuresin agriculture practice, water pricing and water metering.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Environmental monitoring and assessment 19 (1991), S. 193-202 
    ISSN: 1573-2959
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Leachate, the hazardous liquid that percolated through the refuse layers of a sanitary landfill, if it leaks through the landfill lining system, can become a serious source of groundwater pollution. In the past, leaks have been detected in many landfills lined with flexible membrane liners (FML) whose failure may be attributed to flaws such as imperfect seaming, rips, and tears of the membrane, or from chemical attack that dissolves the membrane. Recent studies have shown that composite lining systems which include either a clayey subbase or a layer of geotextile in addition to the FML, can substantially reduce the leakage of leachate. Therefore in this study, four different lining systems are proposed and evaluated to determine their effectiveness in controlling leachate flow under various degree of flaws (referred to as leakage fraction LF) in the FML. The Hydrologic Evaluation of Landfill Performance (HELP) computer model of the Environmental Protection Agency of USA, currently the most widely accepted model for predicting the performance of leachate collection systems in that country, is used to evaluate the following lining systems: (1) a single FML or liner, (2) a single FML with a clayey composite, (3) a single FML with a geotextile called Claymax, and (4) a double FML. Based on the climatic conditions and the present lining construction cost of Alaska, the study shows that a single FML or liner is the most economical but it is also the least effective in controlling leachate flow. Design (3), a single FML with a geotextile, costs about 50 percent more but it reduces the leakage of leachate by several orders. Design (2) is also effective but the cost incurred in constructing a 3 feet thick clayey subbase is prohibitive and thus to effectively and economically minimize the hazards of potential groundwater contamination by leachate, Design (3) is recommended as the composite lining system for future landfill sites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-12-22
    Description: Globally, thermodynamics explains an increase in atmospheric water vapor with warming of around 7%/°C near to the surface. In contrast, global precipitation and evaporation are constrained by the Earth's energy balance to increase at ∼2-3%/°C. However, this rate of increase is suppressed by rapid atmospheric adjustments in response to greenhouse gases and absorbing aerosols that directly alter the atmospheric energy budget. Rapid adjustments to forcings, cooling effects from scattering aerosol, and observational uncertainty can explain why observed global precipitation responses are currently difficult to detect but are expected to emerge and accelerate as warming increases and aerosol forcing diminishes. Precipitation increases with warming are expected to be smaller over land than ocean due to limitations on moisture convergence, exacerbated by feedbacks and affected by rapid adjustments. Thermodynamic increases in atmospheric moisture fluxes amplify wet and dry events, driving an intensification of precipitation extremes. The rate of intensification can deviate from a simple thermodynamic response due to in-storm and larger-scale feedback processes, while changes in large-scale dynamics and catchment characteristics further modulate the frequency of flooding in response to precipitation increases. Changes in atmospheric circulation in response to radiative forcing and evolving surface temperature patterns are capable of dominating water cycle changes in some regions. Moreover, the direct impact of human activities on the water cycle through water abstraction, irrigation, and land use change is already a significant component of regional water cycle change and is expected to further increase in importance as water demand grows with global population.
    Description: Published
    Description: 49-75
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Keywords: climate change; land surface; precipitation; radiative forcing; water cycle
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-06-15
    Description: The total amount of rainfall associated with tropical cyclones (TCs) over a given region is proportional to rainfall intensity and the inverse of TC translation speed. Although the contributions of increase in rainfall intensity to larger total rainfall amounts have been extensively examined, observational evidence on impacts of the recently reported but still debated long-term slowdown of TCs on local total rainfall amounts is limited. Here, we find that both observations and the multimodel ensemble of Global Climate Model simulations show a significant slowdown of TCs (11% in observations and 10% in simulations, respectively) from 1961 to 2017 over the coast of China. Our analyses of long-term observations find a significant increase in the 90th percentile of TC-induced local rainfall totals and significant inverse relationships between TC translation speeds and local rainfall totals over the study period. The study also shows that TCs with lower translation speed and higher rainfall totals occurred more frequently after 1990 in the Pearl River Delta in southern China. Our probability analysis indicates that slow-moving TCs are more likely to generate heavy rainfall of higher total amounts than fast-moving TCs. Our findings suggest that slowdown of TCs tends to elevate local rainfall totals and thus impose greater flood risks at the regional scale.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-02-01
    Description: In the past few decades, there have been more extreme climate events occurring worldwide, including Canada, which has also suffered from many extreme precipitation events. In this paper, trend analysis, probability distribution functions, principal component analysis, and wavelet analysis were used to investigate the spatial and temporal patterns of extreme precipitation events of Canada. Ten extreme precipitation indices were calculated using long-term daily precipitation data (1950–2012) from 164 Canadian gauging stations. Several large-scale climate patterns such as El Niño–Southern Oscillation (ENSO), Pacific decadal oscillation (PDO), Pacific–North American (PNA), and North Atlantic Oscillation (NAO) were selected to analyze the relationships between extreme precipitation and climate indices. Convective available potential energy (CAPE), specific humidity, and surface temperature were employed to investigate potential causes of trends in extreme precipitation. The results reveal statistically significant positive trends for most extreme precipitation indices, which means that extreme precipitation of Canada has generally become more severe since the mid-twentieth century. The majority of indices display more increasing trends along the southern border of Canada while decreasing trends dominated the central Canadian Prairies. In addition, strong teleconnections are found between extreme precipitation and climate indices, but the effects of climate patterns differ from region to region. Furthermore, complex interactions of climate patterns with synoptic atmospheric circulations can also affect precipitation variability, and changes to the summer and winter extreme precipitation could be explained more by the thermodynamic impact and the combined thermodynamic and dynamic effects, respectively. The seasonal CAPE, specific humidity, and temperature are correlated to Canadian extreme precipitation, but the correlations are season dependent, which could be positive or negative.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-09-01
    Print ISSN: 0022-1694
    Electronic ISSN: 1879-2707
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-11-04
    Print ISSN: 0143-1161
    Electronic ISSN: 1366-5901
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Taylor & Francis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1991-01-01
    Print ISSN: 0167-6369
    Electronic ISSN: 1573-2959
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-01-26
    Print ISSN: 0920-4741
    Electronic ISSN: 1573-1650
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...