ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 13 (1990), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. In a series of factorial experiments with cultivated Vitis californica Benth. (California wild grape) growth outdoors in full sun, we examined the effects of sunlight, temperature and water status on net CO2 uptake and PSH chlorophyll fluorescence at 77K. Exposure to either high light or high temperature caused reductions in PSH activity followed by partial or complete overnight recovery. Upon simulataneous exposure to high light and high temperature, PSH inhibition was severe and persistent. The maximum chlorophyll fluorescence (FM) and the ratio of variable to maximum fluorescence (Fv/FM) differed in their responses to combinations of light and temperature. At both low and high light. FM declined with increasing temperature over a wide temperature range, while Fv/FM exhibited a similar sensitivity to temperature only at high light. Net CO2 uptake declined by mid-afternoon and recovered by the next morning in most leaves, regardless of incident light or temperature. However, high-light leaves exhibited severe and lasting declines if temperatures exceeded 45°C. Water-stressed leaves exposed to high light exhibited greater reductions of net CO2 uptake than water-stressed leaves exposed to low light. However, the degree of light-dependent decline in PSH fluorescence (FM and Fv/FM) did not vary with water status, indicating that reduced PSH activity was not a primary cause of reduced carbon gain during water stress.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Lifelong exposure to elevated concentrations of atmospheric CO2 may enhance carbon assimilation of trees with unlimited rooting volume and consequently may reduce requirements for photoprotective pigments. In early summer the effects of elevated [CO2] on carboxylation and light utilization of mature Quercus pubescens trees growing under chronic [CO2] enrichment at two CO2 springs and control sites in Italy were examined. Net photosynthesis was enhanced by 36 to 77%. There was no evidence of photosynthetic downregulation early in the growing season when sink demand presumably was greatest. Specifically, maximum assimilation at saturating [CO2], electron transport capacity, and Rubisco content, activity and carboxylation capacity were not significantly different in trees growing at the CO2 springs and their respective control sites. Foliar biochemical content, leaf reflectance index of chlorophyll pigments (NDVI), and photochemical efficiency of PSII (ΔF/Fm′) also were not significantly affected by [CO2] enrichment except that starch content and ΔF/Fm′ tended to be higher at one spring (42 and 15%, respectively). Contrary to expectation, prolonged elevation of [CO2] did not reduce xanthophyll cycle pigment pools or alter mid-day values of leaf reflectance index of xanthophyll cycle pigments (PRI), despite the enhancement of carbon assimilation. However, both these pigments and PRI were well correlated with electron transport capacity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 14 (1991), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. Sunflower plants (Helianthus annuus L., cv. CGL 208) were field-grown in adjacent plots of varying resource availability. Control plants received irrigation (on a 4–5 d interval) and high levels of fertilizer nitrogen. Nutrient-stress (N-stress) plants received control levels of irrigation but no nutrient amendments and were determined to be nitrogen-limited. Water-stress (H2O-stress) plants received control levels of fertilizer nitrogen, but no irrigation after approximately 6 weeks of plant growth. Both stress treatments reduced maximum and diurnal net photosynthesis (A) but resulted in different physiological or biochemical adjustments that tended to maintain or increase A per unit of resource (nitrogen or water) in shortest supply while decreasing the ratio of A per unit of abundant resource. Nutrient-stress reduced total foliar nitrogen, foliar chlorophyll, and initial and total RuBPCase activities, thereby enhancing or preserving photosynthetic nitrogen-use efficiency (NUE), defined as the maximum A observed per unit of leaf nitrogen, relative to the control and H2O-stress treatments. In addition, N-stress reduced photosynthetic water-use efficiency (WUE), defined as the ratio of A to stomatal conductance to water vapour (g). The slope of A versus g increased with H2O-stress. In addition, sunflower plants responded to H2O-stress by accumulating foliar glucose and sucrose and by exhibiting diurnal leaf wilting, which presumably provided additional improvements in photosynthetic WUE through osmoregulation and reduction of midday radiation interception respectively. Photosynthetic NUE was decreased by H2O-stress in that control levels of total nitrogen, foliar chlorophyll, and RuBPCase activities were maintained even after mean diurnal levels of A had fallen to less than 50% of the control level. We conclude that field-grown sunflower manages a trade-off between photosynthetic WUE and NUE, increasing use efficiency of the scarce resource while decreasing use efficiency of the abundant resource.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1939
    Keywords: Key words Functional type ; Photochemical reflectance index ; Photosynthetic down-regulation ; Radiation use efficiency ; Xanthophyll cycle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The photochemical reflectance index (PRI), derived from narrow-band reflectance at 531 and 570 nm, was explored as an indicator of photosynthetic radiation use efficiency for 20 species representing three functional types: annual, deciduous perennial, and evergreen perennial. Across species, top-canopy leaves in full sun at midday exhibited a strong correlation between PRI and ΔF/Fm′, a fluorescence-based index of photosystem II (PSII) photochemical efficiency. PRI was also significantly correlated with both net CO2 uptake and radiation use efficiency measured by gas exchange. When species were examined by functional type, evergreens exhibited significantly reduced midday photosynthetic rates relative to annual and deciduous species. This midday reduction was associated with reduced radiation use efficiency, detectable as reduced net CO2 uptake, PRI, and ΔF/Fm′ values, and increased levels of the photoprotective xanthophyll cycle pigment zeaxanthin. For each functional type, nutrient deficiency led to reductions in both PRI and ΔF/Fm′ relative to fertilized controls. Laboratory experiments exposing leaves to diurnal courses of radiation and simulated midday stomatal closure demonstrated that PRI changed rapidly with both irradiance and leaf physiological state. In these studies, PRI was closely correlated with both ΔF/Fm' and radiation use efficiency determined from gas exchange at all but the lowest light levels. Examination of the difference spectra upon exposure to increasing light levels revealed that the 531 nm Δ reflectance signal was composed of two spectral components. At low irradiance, this signal was dominated by a 545-nm component, which was not closely related to radiation use efficiency. At progressively higher light levels above 100 μmol m−2 s−1, the 531-nm signal was increasingly dominated by a 526-nm component, which was correlated with light use efficiency and with the conversion of the xanthophyll pigment violaxanthin to antheraxanthin and zeaxanthin. Further consideration of the two components composing the 531-nm signal could lead to an index of photosynthetic function applicable over a wide range of illumination. The results of this study support the use of PRI as an interspecific index of photosynthetic radiation use efficiency for leaves and canopies in full sun, but not across wide ranges in illumination from deep shade to full sun. The discovery of a consistent relationship between PRI and photosynthetic radiation use efficiency for top-canopy leaves across species, functional types, and nutrient treatments suggests that relative photosynthetic rates could be derived with the “view from above” provided by remote reflectance measurements if issues of canopy and stand structure can be resolved.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1939
    Keywords: Chlorophyll fluorescence ; Photosynthesis ; Remote sensing ; Sunflower (Helianthus annuus) ; Xanthophyll cycle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Sudden illumination of sunflower (Helianthus annuus L. cv. CGL 208) leaves and canopies led to excess absorbed PFD and induced apparent reflectance changes in the green, red and near-infrared detectable with a remote spectroradiometer. The green shift, centered near 531 nm, was caused by reflectance changes associated with the de-epoxidation of violaxanthin to zeaxanthin via antheraxanthin and with the chloroplast thylakoid pH gradient. The red (685 nm) and near-infrared (738 nm) signals were due to quenching of chlorophyll fluorescence. Remote sensing of shifts in these spectral regions provides non-destructive information on in situ photosynthetic performance and could lead to improved techniques for remote sensing of canopy photosynthesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 79 (1989), S. 475-481 
    ISSN: 1432-1939
    Keywords: Heat stress ; Leaf movement ; Photoinhibition ; Photosynthesis ; Vitis californica
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Gas exchange and chlorophyll fluorescence techniques were used to evaluate the hypothesis that leaf movement in Vitis californica Benth. (California wild grape) allows a compromise between sunlight interception and stress damage in order to maximize photosynthetic carbon gain over the life of the leaf. Leaves that were restrained horizontally tolerated their increased radiation loads if critical temperatures were not exceeded. Reductions in photosynthetic capacity and the F V/F M fluorescence ratio only occurred in leaves that attained high temperatures. Leaf orientation and canopy position were important determinants of leaf temperature. These results indicate that excessive leaf temperature, not high PFD, can be a principle cause of reduced carbon gain and senescence in this species in the wild. Leaf movement appears to protect photosynthetic components in midsummer.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-03-05
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-03-20
    Description: We agree with Knyazikhin et al. (1), who reported in a recent issue of PNAS that relationships between foliar nitrogen (%N) and near-infrared (NIR) canopy albedo appeared to be indirect and explained largely by differences in leaf and canopy structure, primarily between conifer and broadleaf species. We disagree, however, with...
    Keywords: Letters
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-05-01
    Print ISSN: 0022-4596
    Electronic ISSN: 1095-726X
    Topics: Chemistry and Pharmacology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-07-01
    Print ISSN: 0022-4596
    Electronic ISSN: 1095-726X
    Topics: Chemistry and Pharmacology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...