ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-06-21
    Description: This paper introduces REXELite, an internet version of REXEL, a software for automatic selection of ground motion suites for nonlinear dynamic analysis of structures. REXELite was developed with the aim of integrating an advanced earthquake records’ repository, such as the ITalianACcelerometricArchive (ITACA), with a tool to define seismic input for engineering seismic analysis according to international standards (with priority to Europe). In fact, REXELite allows to define target design spectra according either to Eurocode 8 or to the Italian building code, and to search ITACA for suitable sets of seven records (comprised of one or two horizontal ground motion components) matching such target spectra: on average, in a user-specified period range, and with the desired tolerance. The records in the set also have, individually and according to some criteria, the most similar spectral shape with respect to that of the code. Selection options include magnitude, source-to-site distance, soil conditions and, if desired, linear scaling of records to reduce further record-to-record variability of the selected suite.This paper introduces REXELite, an internet version of REXEL, a software for automatic selection of ground motion suites for nonlinear dynamic analysis of structures. REXELite was developed with the aim of integrating an advanced earthquake records’ repository, such as the ITalianACcelerometricArchive (ITACA), with a tool to define seismic input for engineering seismic analysis according to international standards (with priority to Europe). In fact, REXELite allows to define target design spectra according either to Eurocode 8 or to the Italian building code, and to search ITACA for suitable sets of seven records (comprised of one or two horizontal ground motion components) matching such target spectra: on average, in a user-specified period range, and with the desired tolerance. The records in the set also have, individually and according to some criteria, the most similar spectral shape with respect to that of the code. Selection options include magnitude, source-to-site distance, soil conditions and, if desired, linear scaling of records to reduce further record-to-record variability of the selected suite.
    Description: Published
    Description: 1761-1778
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: reserved
    Keywords: Response spectrum matching ; ITACA ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-12-01
    Description: The study presented in this paper is among the first in a series of studies toward the engineering validation of the hybrid broadband ground-motion simulation methodology by Graves and Pitarka (2010) . This paper provides a statistical comparison between seismic demands of single degree of freedom (SDoF) systems subjected to past events using simulations and actual recordings. A number of SDoF systems are selected considering the following: (1) 16 oscillation periods between 0.1 and 6 s; (2) elastic case and four nonlinearity levels, from mildly inelastic to severely inelastic systems; and (3) two hysteretic behaviors, in particular, nondegrading–nonevolutionary and degrading–evolutionary. Demand spectra are derived in terms of peak and cyclic response, as well as their statistics for four historical earthquakes: 1979 M w  6.5 Imperial Valley, 1989 M w  6.8 Loma Prieta, 1992 M w  7.2 Landers, and 1994 M w  6.7 Northridge. The results of this study show that both elastic and inelastic demands from simulated and recorded motions are generally similar. However, for some structural systems, the inelastic response to simulated accelerograms may produce median demands that appear different from those obtained using corresponding recorded motions. The magnitude of such differences depends on the SDoF period, the nonlinearity level, and, to a lesser extent, the hysteretic model used. In the case of peak response, these discrepancies are likely due to differences in the spectral shape, while the differences in terms of cyclic response can be explained by some integral parameters of ground motion (i.e., duration-related). Moreover, the intraevent standard deviation values of structural demands calculated from the simulations are generally lower than those given by recorded ground motions, especially at short periods. The assessment of the results using formal statistical hypothesis tests indicates that, in most cases, the differences found are not significant, increasing the trust in the use of simulated motions for engineering applications.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-11-06
    Description: It has been suggested that a better knowledge of fault locations and slip rates improves seismic hazard assessments. However, the importance of detailed along‐fault‐slip‐rate profiles and variable fault geometry has not yet been explored. We quantify the importance for modeled seismicity rates of using multiple throw‐rate measurements to construct along‐fault throw‐rate profiles rather than basing throw‐rate profiles on a single measurement across a fault. We use data from 14 normal faults within the central Italian Apennines where we have multiple measurements along the faults. For each fault, we compared strain rates across the faults using our detailed throw‐rate profiles and degraded data and simplified profiles. We show the implied variation in average recurrence intervals for a variety of magnitudes that result. Furthermore, we demonstrate how fault geometry (variable strike and dip) can alter calculated ground‐shaking intensities at specific sites by changing the source‐to‐site distance for ground‐motion prediction equations (GMPEs). Our findings show that improved fault‐based seismic hazard calculations require detailed along‐fault throw‐rate profiles based on well‐constrained local 3D fault geometry for calculating recurrence rates and shaking intensities.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2010-12-01
    Description: Vector-valued ground-motion intensity measures (IMs) have been the focus of a significant deal of research recently. Proposed measures are mainly functions of spectral ordinates, which have been shown to be useful in the assessment of structural response. This is especially appropriate in the case of structures following modern earthquake-resistant design principles, in which structural damage is mainly caused by peak displacements experienced during nonlinear dynamics. On the other hand, there may be cases in which the cumulative damage potential of the earthquake is also of concern, even if it is generally believed that integral ground-motion IMs, associated with duration, are less important with respect to peak parameters of the record. For these IMs, it seems appropriate to develop conditional hazard maps, that is, maps of percentiles of a secondary IM (e.g., duration-related) given the occurrence or exceedance of a primary parameter (e.g., peak acceleration), for which a design hazard map is often already available. In this paper, this concept is illustrated, and conditional hazard is developed for a parameter, which may account for the cumulative damage potential of ground motion, the so-called Cosenza and Manfredi index (I (sub D) ), given peak ground acceleration (PGA). To this aim, a ground-motion prediction relationship was derived for I (sub D) first. Subsequently, the residuals of PGA and I (sub D) were tested for correlation and for joint normality. Finally, the study obtained analytical distributions of I (sub D) conditional on PGA and on the corresponding design earthquake in terms of magnitude and distance from hazard disaggregation. As shown by the application to the Campania region (southern Italy), I (sub D) maps conditional on the code design values of PGA may be useful, for example, for a more refined ground-motion record selection as an input for nonlinear dynamic analysis of structures.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-12-01
    Description: The study presented in this paper is among the first in a series of studies toward the engineering validation of the hybrid broadband ground-motion simulation methodology by Graves and Pitarka (2010). This paper provides a statistical comparison between seismic demands of single degree of freedom (SDoF) systems subjected to past events using simulations and actual recordings. A number of SDoF systems are selected considering the following: (1) 16 oscillation periods between 0.1 and 6 s; (2) elastic case and four nonlinearity levels, from mildly inelastic to severely inelastic systems; and (3) two hysteretic behaviors, in particular, nondegrading-nonevolutionary and degrading-evolutionary. Demand spectra are derived in terms of peak and cyclic response, as well as their statistics for four historical earthquakes: 1979 M (sub w) 6.5 Imperial Valley, 1989 M (sub w) 6.8 Loma Prieta, 1992 M (sub w) 7.2 Landers, and 1994 M (sub w) 6.7 Northridge. The results of this study show that both elastic and inelastic demands from simulated and recorded motions are generally similar. However, for some structural systems, the inelastic response to simulated accelerograms may produce median demands that appear different from those obtained using corresponding recorded motions. The magnitude of such differences depends on the SDoF period, the nonlinearity level, and, to a lesser extent, the hysteretic model used. In the case of peak response, these discrepancies are likely due to differences in the spectral shape, while the differences in terms of cyclic response can be explained by some integral parameters of ground motion (i.e., duration-related). Moreover, the intraevent standard deviation values of structural demands calculated from the simulations are generally lower than those given by recorded ground motions, especially at short periods. The assessment of the results using formal statistical hypothesis tests indicates that, in most cases, the differences found are not significant, increasing the trust in the use of simulated motions for engineering applications.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...