ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-08-25
    Description: Modeling soil thermal dynamics at high latitudes and altitudes requires representations of physical processes such as snow insulation, soil freezing and thawing and subsurface conditions like soil water/ice content and soil texture. We have compared six different land models: JSBACH, ORCHIDEE, JULES, COUP, HYBRID8 and LPJ-GUESS, at four different sites with distinct cold region landscape types, to identify the importance of physical processes in capturing observed temperature dynamics in soils. The sites include alpine, high Arctic, wet polygonal tundra and non-permafrost Arctic, thus showing how a range of models can represent distinct soil temperature regimes. For all sites, snow insulation is of major importance for estimating topsoil conditions. However, soil physics is essential for the subsoil temperature dynamics and thus the active layer thicknesses. This analysis shows that land models need more realistic surface processes, such as detailed snow dynamics and moss cover with changing thickness and wetness, along with better representations of subsoil thermal dynamics.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 14 (1991), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. A model of photosynthesis (PGEN) is presented. The model assumes that optimal use is made of the leaf nitrogen available for partitioning between the carboxylase and thylakoid components. This results in predictions of Rubisco and chlorophyll concentrations very similar to those measured elsewhere. A function is incorporated which represents the detrimental effects of negative leaf water potentials on the Calvin cycle, producing a quantitative and mechanistic trade-off between CO2 entering, and H2O leaving, the leaf. Thus, an optimal stomatal conductance and associated internal partial pressure of CO2 exists for any given set of environmental conditions. The model calculates this optimal state for the leaf, which is its output. The model was subjected to changes in the following parameters: soil water potential, irradiance, ambient CO2 partial pressure, leaf temperature, leaf-to-air vapour pressure deficit, wind speed, atmospheric pressure, leaf nitrogen content, root dry weight and leaf width. These perturbations resulted in changes in predicted optimal conductance which were very similar to what has been observed. In general, as the capacity of the leaf to fix CO2 increased, so did the predicted optimal conductance, with the internal partial pressure of CO2 being maintained close to 22Pa.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Global change biology 6 (2000), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: A dynamic, global vegetation model, hybrid v4.1 (Friend et al. 1997), was driven by transient climate output from the UK Hadley Centre GCM (HadCM2) with the IS92a scenario of increasing atmospheric CO2 equivalent, sulphate aerosols and predicted patterns of atmospheric N deposition. Changes in areas of vegetation types and carbon storage in biomass and soils were predicted for areas north of 50°N from 1860 to 2100. Hybrid is a combined biogeochemical, biophysical and biogeographical model of natural, potential ecosystems. The effect of periodic boreal forest fires was assessed by adding a simple stochastic fire model. Hybrid represents plant physiological and soil processes regulating the carbon, water and N cycles and competition between individuals of parameterized generalized plant types. The latter were combined to represent tundra, temperate grassland, temperate/mixed forest and coniferous forest. The model simulated the current areas and estimated carbon stocks in the four vegetation types.It was predicted that land areas above 50°N (about 23% of the vegetated global land area) are currently accumulating about 0.4 PgC y−1 (about 30% of the estimated global terrestrial sink) and that this sink could grow to 0.8–1.0 PgC y−1 by the second half of the next century and persist undiminished until 2100. This sink was due mainly to an increase in forest productivity and biomass in response to increasing atmospheric CO2, temperature and N deposition, and includes an estimate of the effect of boreal forest fire, which was estimated to diminish the sink approximately by the amount of carbon emitted to the atmosphere during fires. Averaged over the region, N deposition contributed about 18% to the sink by the 2080 s. As expected, climate change (temperature, precipitation, solar radiation and saturation pressure deficit) and N deposition without increasing atmospheric CO2 produced a carbon source. Forest areas expanded both south and north, halving the current tundra area by 2100. This expansion contributed about 30% to the sink by the 2090 s. Tundra areas which were not invaded by forest fluctuated from sink to source. It was concluded that a high latitude carbon sink exists at present and, even assuming little effect of N deposition, no forest expansion and continued boreal forest fires, the sink is likely to persist at its current level for a century.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 210 (1966), S. 579-580 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] LEAD-210 concentrations in ground-level air are of interest because it has been estimated by Holtzman1 that about half the activity of this isotope present in human bones is acquired through inhalation. Lead-210 occurs naturally and, due to its long half-life (22 years), is not restricted to the ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 138 (1936), S. 245-245 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] IN our recent letter to NATURE1, we did not mean to infer that reflections from the 60 km. level had not been found before. So early as 1930, Appleton2 noticed reflections of this type. In 1935, Mitra and Syam3 recorded reflections from this level ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Future climate warming is expected to enhance plant growth in temperate ecosystems and to increase carbon sequestration. But although severe regional heatwaves may become more frequent in a changing climate, their impact on terrestrial carbon cycling is unclear. Here we report measurements of ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 137 (1936), S. 782-782 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] DURING the last ten years, investigations based upon the mathematical theories of Eccles and Larmor have given considerable information regarding the reflecting layers of the atmosphere. The most interesting discovery was that of Prof. E. V. Appleton, who showed that there is an upper ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Previously published results from a multidisciplinary research program, Response of Plants to Interacting Stress (ROPIS), initiated by the Electric Power Research Insitute are summarized here. The overall objective of the ROPIS program was to develop a general mechanistic theory of plant response to air pollutants and other stresses. Direct and indirect phytotoxic impacts of O3 combined with induced deficiencies of key nutrients as a consequence of acidic deposition are important components in many of the hypotheses used to explain reported declines in forest growth. In order to address these concerns as they relate to loblolly pine (Pinus taeda L.) growth and develop a greater level of mechanistic understanding of stress response, a study was formulated with two major objectives: (i) over a multi-yr period evaluate the role of loblolly pine genotype in governing loblolly growth response to O3; and (ii) determine the underlying physiological and edaphic basis for loblolly growth response to O3, acidic precipitation, and soil Mg status. An open-top chamber facility located at Oak Ridge, TN provided controlled O3 exposure for the genotype screening study (1986–88) and controlled O3 exposure and rainfall exclusion and addition for the O3-rainfall acidity-soil Mg interaction study (1987–89). A variety of experimental techniques, measurements, and statistical procedures were used over a 4-yr period to quantify various aspects of plant growth, physiology, and soil-plant relationships. Results from the genotype screening study indicate that although family-specific O3 effects were observed at the end of the first year, no statistically significant O3 effects on diameter, height, or total biomass were evident at the end of three growing seasons; nor were any significant O3-family interactions found. In the interaction study, rainfall acidity and soil Mg level had only minimal affects on seedling growth and physiology. Ozone exposure produced significant changes in many variables, the most important being a net retention of carbon in above-ground biomass and a subsequent reduction in carbon allocation to the root system. This change could have important longterm implications for the tree's ability to obtain water and nutrients, maintain important rhizosphere organisms, and achieve a level of vigor that protects against disease and insect attack.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 1994-05-01
    Print ISSN: 0047-2425
    Electronic ISSN: 1537-2537
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...