ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-04-01
    Print ISSN: 0925-4005
    Electronic ISSN: 1873-3077
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-11-01
    Electronic ISSN: 1941-7012
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-03-01
    Electronic ISSN: 1941-7012
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-11-29
    Description: In sub-Saharan Africa, nearly a quarter of a million babies are born with sickle cell disease (SCD) each year. An estimated 50-90% of these babies die before age 5 due to lack of early diagnosis and timely treatment. The World Health Organization estimates that more than 70% of SCD related deaths are preventable with simple, cost-effective interventions, such as early screening followed by affordable and widely available treatment regimens. Here, we present the early clinical testing results of HemeChip, which is the first single-use cartridge-based microchip electrophoresis hemoglobin screening platform. HemeChip was developed by Hemex Health, Inc., based on technology licensed from Case Western Reserve University. HemeChip allows affordable, objective, quantitative screening of hemoglobin variants at the point-of-care. HemeChip works with a drop of finger or heel-prick blood and separates hemoglobin variants on a piece of cellulose acetate paper that is housed in an injection molded plastic cartridge with a precisely controlled electric field. HemeChip works with a portable reader to produce easily understandable, objective, and quantitative descriptions of the hemoglobin types and percentages present in a blood sample. The HemeChip reader guides the user step-by-step through the test procedure with animated on-screen instructions to minimize user errors. Hemoglobin identification and quantification is automatically done with a custom software on the reader. HemeChip reader records and analyzes the hemoglobin electrophoresis real-time, and it can wirelessly transmit the test results to a central electronic database, if needed. HemeChip prototype units have been clinically tested and benchmarked against the clinical standard technique in Kano, Nigeria, where the SCD prevalence is the highest in the world. We tested a total of 248 subjects (228 children aged 6 weeks to 5 years in Kano, Nigeria; and 20 adults in Cleveland, Ohio, United States) under institutional review board approval, using both HemeChip and the clinical standard laboratory method, High Performance Liquid Chromatography (HPLC, VARIANT™ II, Bio-Rad Laboratories, Inc., Hercules, California). HemeChip tests were done on eHealth Africa campus in Kano, Nigeria, by trained local healthcare workers using blood samples collected at the nearby Aminu Kano Teaching Hospital. Clinical standard (HPLC) testing was done independently by the International Foundation Against Infectious Disease in Nigeria (IFAIN, Abuja, Nigeria) for the blood samples obtained in Kano or by the University Hospitals Cleveland Medical Center Clinical Laboratories (Cleveland, Ohio) for the blood samples obtained in Cleveland. Test results included the following: homozygous SCD (HbSS), heterozygous sickle hemoglobin C disease (HbSC), heterozygous sickle trait (HbAS), and normal (HbAA). HemeChip identified the subjects with HbSS with 100% accuracy, HbSC with 100% accuracy, HbAS with 98.2% accuracy, and HbAA with 96.4% accuracy in comparison to HPLC (Table 1). Overall accuracy of HemeChip was 97.2% in comparison to HPLC for the subjects tested. HemeChip sensitivity was 100% for all hemoglobin variants tested (Table 2), and specificity was 96.4% for HbSS vs. HbAA, 98.2% for HbSS vs. HbAS, 100% for HbSC vs. HbAS, and 100% for HbAS vs. HbAA. Bland-Altman analysis indicated strong agreement between the quantitative HPLC and HemeChip results for hemoglobin percentages, with a mean bias of -3.2%. HemeChip enables, for the first time, accurate, cost-effective identification and quantification of hemoglobin variants at the point-of-need. HemeChip has been developed based on a versatile, mass-producible microchip electrophoresis platform technology that may address other unmet needs in biology and medicine that require rapid, decentralized hemoglobin or protein analysis, identification, and/or quantification. Disclosures Thota: Hemex Health Inc: Employment. Little:PCORI: Research Funding; Hemex: Patents & Royalties: Patent, no honoraria; NHLBI: Research Funding; Doris Duke Charitable Foundations: Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-11-13
    Description: Nigeria leads the world in the number of cases of sickle cell disease (SCD). An estimated 150,000 babies are born annually in Nigeria with SCD, a heredity disorder, and 70-90% die before age 5. Only a small portion of affected infants and children in sub Saharan Africa (SSA) reach adolescence. Over 650 children die per day in sub-Saharan Africa from SCD. These dismal statistics are in sharp contrast to outcomes in high-income countries (HICs) where more than 90% of SCD patients reach adulthood. The World Health Organization (WHO) estimates that 70% of deaths could be prevented with a low cost diagnostic and treatment plan. Meaningful preventive care and treatment cannot be implemented without a structured plan for early diagnosis and patient tracking.Early diagnosis requires improved access to parents and guardians of children with SCD, and gaining this access remains a challenge in most of SSA. In 2015, Nigeria's Kano state government, with support from foreign partners, established a community-based program for newborn registration. This platform provides unique access to newborn babies in one of Nigeria's most populous cities, but still lacks a functioning patient testing, tracking, and monitoring system, which we plan to address in our ongoing study. This study will introduce mobile health in a low-income country with low literacy rate and hopefully accustom that segment of the population to more varied mobile health applications that will ultimately improve their health in the long run. Our current operational platform in Kano, Nigeria provides access to a large population with a high prevalence of SCD. We have previously completed pilot testing of 315 subjects for SCD using our microchip electrophoresis test. We are planning to test up to 4,500 additional subjects less than 5 years of age at Murtala Muhammed Specialist Hospital. The hospital staff includes 97 physicians and 415 nurses and outpatient clinics serve about 30,000 patients monthly. The maternity department has a 200-bed capacity and the antenatal clinic performs about 1,000 deliveries and serves an average of 3,000 mothers monthly. Enrollment is planned to start on September 15, 2019 and medical staff are currently being trained to run the tests. Our study is registered in the United States National Library of Medicine's ClinicalTrials.gov (Identifier: NCT03948516). Our technology is uniquely paired with an automatic reader and an Electronic Medical Record (EMR) and patient management solution to record POC test results, register new cases, and track patients for follow-up (Fig. 1). The reader enables automated interpretation of test results, local and remote test data storage, and includes geolocation (Global Positioning System) (Fig. 2). The system will generate reports for all cases of SCD, track hospital visits, appointments, lab tests, and will have mobile and dashboard applications for tracking patients and samples. The application will be installed on mobile devices provided to users. The proposed system will be compliant with the existing privacy standards to handle medical data (e.g., HIPAA in the US and GDPR in the EU). All communications between the parties will be secured via end-to-end encryption as a safeguard. We anticipate that our project will increase the rates of screening, diagnosis and timely treatment of SCD in Kano State of Nigeria. The project's broader impact will likely be the ability to track and monitor screening, disease detection, diagnosis and treatment, which can be scaled up to the whole nation of Nigeria, then to sub-Saharan Africa. The data obtained and analyzed will be the first of their kind and will be used to inform the design of programs to improve access to, and availability of, effective care for this underserved populations. The importance of increased access to diagnosis and treatment should not be underestimated - it is crucial for realizing effective management of people with SCD. The impact can be enhanced by complementing diagnosis and patient tracking with education for the families so they can provide or seek the necessary preventative treatment. Identification of the location of the patients in need would help identify the areas where family, parent, caregiver education should be provided. Disclosures Fraiwan: Hemex Health, Inc.: Equity Ownership, Patents & Royalties. Hasan:Hemex Health, Inc.: Equity Ownership, Patents & Royalties. An:Hemex Health, Inc.: Patents & Royalties. Thota:Hemex Health, Inc.: Employment. Gurkan:Hemex Health, Inc.: Consultancy, Employment, Equity Ownership, Patents & Royalties, Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
  • 8
    Publication Date: 2019-11-13
    Description: Introduction: Nearly 24% of the world's population carry hemoglobin (Hb) gene variants, with the large majority of affected births occurring in low-income countries. The most prevalent structural Hb variants are the recessive β-globin gene mutations, βS or S, βC or C, and βE or E1. Hb S mutation is prevalent in sub-Saharan Africa and in Central India. Hb C is common in West Africa, and Hb E is common in Southeast Asia and in India. Homozygotes or compound heterozygotes with βS (e.g., Hb SS or SC) have sickle cell disease (SCD), a chronic sickling disorder associated with pain, chronic multi-organ damage, and high mortality. While Hb EE causes only a mild microcytic anemia, Hb E in combination with β-thalassemia can lead to transfusion dependent thalassemia. Though carriers are typically asymptomatic, they may pass the mutations to their offspring. Screening is needed so that these disorders can be diagnosed early and managed in a timely manner2. For example, in low-income countries, due to lack of nationwide screening and comprehensive care programs, up to 80% of babies born with SCD are undiagnosed and less than half of them survive beyond 5 years of age2. The unmet need for affordable, portable, accurate point-of-care tests to facilitate decentralized hemoglobin testing in resource-constrained countries is well-recognized 2,3. Here, we present international multi-site clinical validation results and high diagnostic accuracy of the 'HemeChip' (Fig. 1), an affordable, 10-minute point-of-care microchip electrophoresis test for identifying common Hb variants S, C, and E. Methods: Institutional Review Board approvals were obtained at each study site, and blood samples were collected as part of the standard clinical care. Tests were performed by local users, including healthcare workers and clinical laboratory personnel. 315 children (6 weeks to 5 years of age) were tested in Kano, Nigeria. Study participants were enrolled at three hospitals, Amino Kano Teaching Hospital, Murtala Mohammed Specialist Hospital, and Hasiya Bayero Pediatric Hospital. 124 subjects (7 weeks to 63 years old) were included in the study at Siriraj Thalassemia Center in Bangkok, Thailand. 298 subjects (8 months to 65 years old) were tested at a referral testing facility of ICMR-National Institute of Research in Tribal Health, located at Late Baliram Kashayap Memorial Medical College, Jagdalpur, Chhattisgarh, India. Blood samples were tested with both HemeChip and the standard reference methods, high performance liquid chromatography or cellulose acetate electrophoresis. Reference test results were not available to the HemeChip users. Similarly, HemeChip test results were not available to the users of the standard reference tests. Clinical validation studies presented here were performed with a fully functional, portable HemeChip prototype developed at Case Western Reserve University (Fig. 1A). A commercial product has been developed based on this technology by Hemex Health Inc. under the product name, GazelleTM(Fig. 1B). Results and Discussion: Among the total 768 tests performed with HemeChip in all test sites, 732 were valid tests, as defined by the Standards for Reporting Diagnostic Accuracy (STARD)4. HemeChip correctly identified all subjects with Hb SS, Hb SC, Hb AS, Hb AE, and Hb EE with 100% accuracy (Table 1). Nine subjects with normal Hb (Hb AA) were identified as HbSS in Nigeria. No subjects with disease were identified as normal or trait by HemeChip. Three subjects with compound heterozygous Hb Sβ-thalassemia (2 subjects with Hb Sβ+-thalassemia, 1 subject with Hb Sβ0-thalassemia) were identified as Hb SS. Sensitivity was 100% for all Hb types tested. Specificity was 98.7% for Hb SS versus other Hb types, and 100% for all other Hb types tested. HemeChip displayed an overall diagnostic accuracy of 98.4% in comparison to standard reference methods for the Hb variants tested in all clinical testing sites (Table 1). HemeChip is a versatile point-of-care system that enables affordable, accurate, decentralized hemoglobin testing in resource-limited settings. References: 1. Weatherall DJ, Clegg JB. Bull World Health Organ. 2001;79(8):704-712. 2. Mburu J, Odame I. International Journal of Laboratory Hematology. 2019;41(S1):82-88. 3. Alapan Y, Fraiwan A, Kucukal E, et al. Expert Review of Medical Devices. 2016;13(12):1073-1093. 4. Bossuyt PM, Reitsma JB, Bruns DE, et al. BMJ : British Medical Journal. 2015;351:h5527. Disclosures Fraiwan: Hemex Health, Inc.: Equity Ownership, Patents & Royalties. Hasan:Hemex Health, Inc.: Equity Ownership, Patents & Royalties. An:Hemex Health, Inc.: Patents & Royalties. Thota:Hemex Health, Inc.: Employment. Piccone:Hemex Health, Inc.: Patents & Royalties. Little:Hemex Health, Inc.: Patents & Royalties; GBT: Research Funding. Gurkan:Hemex Health, Inc.: Consultancy, Employment, Equity Ownership, Patents & Royalties, Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...