ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2021-05-12
    Description: The 2016–2017 Amatrice-Norcia seismic sequence was triggered by the reactivation of a complex NNW-SSE trending, WSW-dipping normal fault system cross-cutting the Umbria-Marche fold and thrust belt near M. Vettore. This fault system produced clear and impressive co-seismic ruptures on normal faults in the hangingwall of the M. Sibillini thrust, whereas ruptures in the footwall were observed, but less clear. As a result, a strong controversy exists in the literature about the geometry of the seismogenic faults, their relationships with preexisting thrusts, and the location of normal-faulting rupture tips. In this work, we present a 3D geological model of the M. Vettore area located between the Castelluccio basin and the outcrop of the M. Sibillini thrust, where the most evident co-seismic ruptures have been observed. The model shows the relationship between the ruptured normal faults and the M. Sibillini thrust, and was constructed using a grid of 14 geological crosssections parallel and orthogonal to the main structural elements (i.e. normal faults and thrusts) down to a depth of 3 km. The model was built using reference structural surfaces, such as the top of the Early Cretaceous Maiolica Fm., the M. Sibillini thrust and the main seismogenic normal faults belonging to the M. Vettore fault system. The 3D model has allowed us to calculate the vertical cumulative throw distribution for the M. Vettore normal faults. The cumulative geological throw of ca. 1300 m across the normal faults in the proximity of the M. Sibillini thrust indicates that the seismogenic fault system continues into the footwall of the thrust, displacing it in the sub-surface. The results of this study provide important constraints on the cross-cutting relationships between active normal and pre-existing compressional structures in seismically active areas, contributing to a better definition of the faults segmentation, and the related seismic hazard.
    Description: Published
    Description: 103938
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: 2016-2017 Central Italy earthquake ; Apennines ; Cross-cutting relationships ; Inherited structures ; 3D structural model
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-16
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fabbrizzi, A., Parnell‐Turner, R., Gregg, P., Fornari, D., Perfit, M., Wanless, V., & Anderson, M. Relative timing of off‐axis volcanism from sediment thickness estimates on the 8°20’N seamount chain, East Pacific Rise. Geochemistry, Geophysics, Geosystems, 23(9), (2022): e2022GC010335, https://doi.org/10.1029/2022gc010335.
    Description: Volcanic seamount chains on the flanks of mid-ocean ridges record variability in magmatic processes associated with mantle melting over several millions of years. However, the relative timing of magmatism on individual seamounts along a chain can be difficult to estimate without in situ sampling and is further hampered by Ar40/Ar39 dating limitations. The 8°20’N seamount chain extends ∼170 km west from the fast-spreading East Pacific Rise (EPR), north of and parallel to the western Siqueiros fracture zone. Here, we use multibeam bathymetric data to investigate relationships between abyssal hill formation and seamount volcanism, transform fault slip, and tectonic rotation. Near-bottom compressed high-intensity radiated pulse, bathymetric, and sidescan sonar data collected with the autonomous underwater vehicle Sentry are used to test the hypothesis that seamount volcanism is age-progressive along the seamount chain. Although sediment on seamount flanks is likely to be reworked by gravitational mass-wasting and current activity, bathymetric relief and Sentry vehicle heading analysis suggest that sedimentary accumulations on seamount summits are likely to be relatively pristine. Sediment thickness on the seamounts' summits does not increase linearly with nominal crustal age, as would be predicted if seamounts were constructed proximal to the EPR axis and then aged as the lithosphere cooled and subsided away from the ridge. The thickest sediments are found at the center of the chain, implying the most ancient volcanism there, rather than on seamounts furthest from the EPR. The nonlinear sediment thickness along the 8°20’N seamounts suggests that volcanism can persist off-axis for several million years.
    Description: This work was supported by National Science Foundation awards OCE-1356610, OCE-1356822, OCE-1357150, OCE-1754419, OCE-1834797, OCE-2001314, and OCE-2001331.
    Keywords: Off-axis seamounts ; East Pacific Rise ; Sediment thickness ; Seafloor morphology ; Autonomous underwater vehicle ; Eruption history
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...