ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-03-29
    Description: CD4(+) T helper lymphocytes that express interleukin-17 (T(H)17 cells) have critical roles in mouse models of autoimmunity, and there is mounting evidence that they also influence inflammatory processes in humans. Genome-wide association studies in humans have linked genes involved in T(H)17 cell differentiation and function with susceptibility to Crohn's disease, rheumatoid arthritis and psoriasis. Thus, the pathway towards differentiation of T(H)17 cells and, perhaps, of related innate lymphoid cells with similar effector functions, is an attractive target for therapeutic applications. Mouse and human T(H)17 cells are distinguished by expression of the retinoic acid receptor-related orphan nuclear receptor RORgammat, which is required for induction of IL-17 transcription and for the manifestation of T(H)17-dependent autoimmune disease in mice. By performing a chemical screen with an insect cell-based reporter system, we identified the cardiac glycoside digoxin as a specific inhibitor of RORgammat transcriptional activity. Digoxin inhibited murine T(H)17 cell differentiation without affecting differentiation of other T cell lineages and was effective in delaying the onset and reducing the severity of autoimmune disease in mice. At high concentrations, digoxin is toxic for human cells, but non-toxic synthetic derivatives 20,22-dihydrodigoxin-21,23-diol and digoxin-21-salicylidene specifically inhibited induction of IL-17 in human CD4(+) T cells. Using these small-molecule compounds, we demonstrate that RORgammat is important for the maintenance of IL-17 expression in mouse and human effector T cells. These data indicate that derivatives of digoxin can be used as chemical templates for the development of RORgammat-targeted therapeutic agents that attenuate inflammatory lymphocyte function and autoimmune disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3172133/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3172133/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huh, Jun R -- Leung, Monica W L -- Huang, Pengxiang -- Ryan, Daniel A -- Krout, Michael R -- Malapaka, Raghu R V -- Chow, Jonathan -- Manel, Nicolas -- Ciofani, Maria -- Kim, Sangwon V -- Cuesta, Adolfo -- Santori, Fabio R -- Lafaille, Juan J -- Xu, H Eric -- Gin, David Y -- Rastinejad, Fraydoon -- Littman, Dan R -- 2R01GM55217/GM/NIGMS NIH HHS/ -- F32GM0860552/GM/NIGMS NIH HHS/ -- R01 AI080885/AI/NIAID NIH HHS/ -- R01AI080885/AI/NIAID NIH HHS/ -- R01GM058833/GM/NIGMS NIH HHS/ -- R01GM067659/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Apr 28;472(7344):486-90. doi: 10.1038/nature09978. Epub 2011 Mar 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21441909" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autoimmune Diseases/drug therapy/immunology/pathology ; Autoimmunity/drug effects/immunology ; Cell Differentiation/*drug effects ; Cell Line ; Digoxin/*analogs & derivatives/chemistry/metabolism/*pharmacology/therapeutic use ; Drosophila/cytology ; Humans ; Interleukin-17/biosynthesis/immunology ; Mice ; Nuclear Receptor Subfamily 1, Group F, Member 3/*antagonists & ; inhibitors/metabolism ; Th17 Cells/*cytology/*drug effects/immunology ; Transcription, Genetic/drug effects/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-03-29
    Description: The impact of nutritional status during fetal life on the overall health of adults has been recognized; however, dietary effects on the developing immune system are largely unknown. Development of secondary lymphoid organs occurs during embryogenesis and is considered to be developmentally programmed. Secondary lymphoid organ formation depends on a subset of type 3 innate lymphoid cells (ILC3) named lymphoid tissue inducer (LTi) cells. Here we show that mouse fetal ILC3s are controlled by cell-autonomous retinoic acid (RA) signalling in utero, which pre-sets the immune fitness in adulthood. We found that embryonic lymphoid organs contain ILC progenitors that differentiate locally into mature LTi cells. Local LTi cell differentiation was controlled by maternal retinoid intake and fetal RA signalling acting in a haematopoietic cell-autonomous manner. RA controlled LTi cell maturation upstream of the transcription factor RORgammat. Accordingly, enforced expression of Rorgt restored maturation of LTi cells with impaired RA signalling, whereas RA receptors directly regulated the Rorgt locus. Finally, we established that maternal levels of dietary retinoids control the size of secondary lymphoid organs and the efficiency of immune responses in the adult offspring. Our results reveal a molecular link between maternal nutrients and the formation of immune structures required for resistance to infection in the offspring.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van de Pavert, Serge A -- Ferreira, Manuela -- Domingues, Rita G -- Ribeiro, Helder -- Molenaar, Rosalie -- Moreira-Santos, Lara -- Almeida, Francisca F -- Ibiza, Sales -- Barbosa, Ines -- Goverse, Gera -- Labao-Almeida, Carlos -- Godinho-Silva, Cristina -- Konijn, Tanja -- Schooneman, Dennis -- O'Toole, Tom -- Mizee, Mark R -- Habani, Yasmin -- Haak, Esther -- Santori, Fabio R -- Littman, Dan R -- Schulte-Merker, Stefan -- Dzierzak, Elaine -- Simas, J Pedro -- Mebius, Reina E -- Veiga-Fernandes, Henrique -- R01 AI080885/AI/NIAID NIH HHS/ -- R01AI080885/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Apr 3;508(7494):123-7. doi: 10.1038/nature13158. Epub 2014 Mar 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands [2] Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, 3584 CT Utrecht, Netherlands. [3]. ; 1] Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal [2]. ; Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal. ; Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands. ; Erasmus Stem Cell Institute, Department of Cell Biology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands. ; Howard Hughes Medical Institute, Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016, USA. ; Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, 3584 CT Utrecht, Netherlands. ; 1] Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24670648" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation/drug effects/immunology ; Diet ; Female ; Fetus/drug effects/*immunology ; Immunity, Innate/drug effects/*immunology ; Lymphoid Tissue/cytology/drug effects/embryology/immunology ; Mice ; Mice, Inbred C57BL ; Pregnancy ; Prenatal Exposure Delayed Effects/*immunology ; Receptors, Retinoic Acid/metabolism ; Signal Transduction/drug effects ; Stem Cells/cytology/drug effects/immunology ; Tretinoin/administration & dosage/*immunology/metabolism/*pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...