ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-06-30
    Description: To investigate the possibility that oil and gas platforms may reduce recruitment of rockfishes (Sebastes spp.) to natural habitat, we simulated drift pathways termed “trajectories” in our model) from an existing oil platform to nearshore habitat using current measurements from high-frequency (HF) radars. The trajectories originated at Platform Irene, located west of Point Conception, California, during two recruiting seasons for bocaccio (Sebastes paucispinis): May through August, 1999 and 2002. Given that pelagic juvenile bocaccio dwell near the surface, the trajectories estimate transport to habitat. We assumed that appropriate shallow water juvenile habitat exists inshore of the 50-m isobath. Results from 1999 indicated that 10% of the trajectories represent transport to habitat, whereas 76% represent transport across the offshore boundary. For 2002, 24% represent transport to habitat, and 69% represent transport across the offshore boundary. Remaining trajectories (14% and 7% for 1999 and 2002, respectively) exited the coverage area either northward or southward along isobaths. Deployments of actual drifters (with 1-m drogues) from a previous multiyear study provided measurements originating near Platform Irene from May through August. All but a few of the drifters moved offshore, as was also shown with the HF radar-derived trajectories. These results indicate that most juvenile bocaccio settling on the platform would otherwise have been transported offshore and perished in the absence of a platform. However, these results do not account for the swimming behavior of juvenile bocaccio, about which little is known.
    Keywords: Biology ; Ecology ; Fisheries ; Management
    Repository Name: AquaDocs
    Type: article , TRUE
    Format: application/pdf
    Format: application/pdf
    Format: 391-400
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-09-15
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 39(2), (2022): 223–235, https://doi.org/10.1175/JTECH-D-21-0110.1.
    Description: Previous work with simulations of oceanographic high-frequency (HF) radars has identified possible improvements when using maximum likelihood estimation (MLE) for direction of arrival; however, methods for determining the number of emitters (here defined as spatially distinct patches of the ocean surface) have not realized these improvements. Here we describe and evaluate the use of the likelihood ratio (LR) for emitter detection, demonstrating its application to oceanographic HF radar data. The combined detection–estimation methods MLE-LR are compared with multiple signal classification method (MUSIC) and MUSIC parameters for SeaSonde HF radars, along with a method developed for 8-channel systems known as MUSIC-Highest. Results show that the use of MLE-LR produces similar accuracy, in terms of the RMS difference and correlation coefficients squared, as previous methods. We demonstrate that improved accuracy can be obtained for both methods, at the cost of fewer velocity observations and decreased spatial coverage. For SeaSondes, accuracy improvements are obtained with less commonly used parameter sets. The MLE-LR is shown to be able to resolve simultaneous closely spaced emitters, which has the potential to improve observations obtained by HF radars operating in complex current environments.
    Description: This work was supported by the National Science Foundation (NSF) under Grant OCE-1658475. Computing resources were provided by the UCSB Center for Scientific Computing through an NSF MRSEC (DMR-1720256) and NSF CNS-1725797.
    Keywords: Ocean ; Algorithms ; Data quality control ; Radars/radar observations ; Remote sensing ; Surface observations ; Quality assurance/control
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Land-based High Frequency (HF) Radars provide critically important observations of the coastal ocean that will be adversely affected by the spinning blades of utility-scale wind turbines. Pathways to mitigate the interference of turbines on HF radar observations exist for small number of turbines; however, a greatly increased pace of research is required to understand how to minimize the complex interference patterns that will be caused by the large arrays of turbines planned for the U.S. outer continental shelf. To support the U.S.’s operational and scientific needs, HF radars must be able to collect high-quality measurements of the ocean’s surface inand around areas with significant numbers of wind turbines. This is a solvable problem, but given the rapid pace of wind energy development, immediate action is needed to ensure that HF radar wind turbine interference mitigation efforts keep pace with the planned build out of turbines.
    Repository Name: Woods Hole Open Access Server
    Type: Working Paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 36(10), (2019): 1997-2014, doi: 10.1175/JTECH-D-19-0029.1.
    Description: While land-based high-frequency (HF) radars are the only instruments capable of resolving both the temporal and spatial variability of surface currents in the coastal ocean, recent high-resolution views suggest that the coastal ocean is more complex than presently deployed radar systems are able to reveal. This work uses a hybrid system, having elements of both phased arrays and direction finding radars, to improve the azimuthal resolution of HF radars. Data from two radars deployed along the U.S. East Coast and configured as 8-antenna grid arrays were used to evaluate potential direction finding and signal, or emitter, detection methods. Direction finding methods such as maximum likelihood estimation generally performed better than the well-known multiple signal classification (MUSIC) method given identical emitter detection methods. However, accurately estimating the number of emitters present in HF radar observations is a challenge. As MUSIC’s direction-of-arrival (DOA) function permits simple empirical tests that dramatically aid the detection process, MUSIC was found to be the superior method in this study. The 8-antenna arrays were able to provide more accurate estimates of MUSIC’s noise subspace than typical 3-antenna systems, eliminating the need for a series of empirical parameters to control MUSIC’s performance. Code developed for this research has been made available in an online repository.
    Description: This analysis was supported by NSF Grants OCE-1657896 and OCE-1736930 to Kirincich, OCE-1658475 to Emery and Washburn and OCE-1736709 to Flament. Flament is also supported by NOAA’s Integrated Ocean Observing System through Award NA11NOS0120039. The authors thank Lindsey Benjamin, Alma Castillo, Ken Constantine, Benedicte Dousset, Ian Fernandez, Mael Flament, Dave Harris, Garrett Hebert, Ben Hodges, Victoria Futch, Matt Guanci, and Philip Moravcik for assistance in building, deploying, and operating the radars.
    Description: 2020-04-11
    Keywords: Ocean ; Coastal flows ; Algorithms ; Radars/Radar observations ; Remote sensing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-05-01
    Description: A new method is described employing small drone aircraft for antenna pattern measurements (APMs) of high-frequency (HF) oceanographic radars used for observing ocean surface currents. Previous studies have shown that accurate surface current measurements using HF radar require APMs. The APMs provide directional calibration of the receive antennas for direction-finding radars. In the absence of APMs, so-called ideal antenna patterns are assumed and these can differ substantially from measured patterns. Typically, APMs are obtained using small research vessels carrying radio signal sources or transponders in circular arcs around individual radar sites. This procedure is expensive because it requires seagoing technicians, a vessel, and other equipment necessary to support small-boat operations. Furthermore, adverse sea conditions and obstacles in the water can limit the ability of small vessels to conduct APMs. In contrast, it is shown that drone aircraft can successfully conduct APMs at much lower cost and in a broader range of sea states with comparable accuracy. Drone-based patterns can extend farther shoreward, since they are not affected by the surfzone, and thereby expand the range of bearings over which APMs are determined. This simplified process for obtaining APMs can lead to more frequent calibrations and improved surface current measurements.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-01-01
    Print ISSN: 0196-2892
    Electronic ISSN: 1558-0644
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-02-01
    Description: HF radars typically produce maps of surface current velocities without estimates of the measurement uncertainties. Many users of HF radar data, including spill response and search and rescue operations, incorporate these observations into models and would thus benefit from quantified uncertainties. Using both simulations and coincident observations from the baseline between two operational SeaSonde HF radars, we demonstrate the utility of expressions for estimating the uncertainty in the direction obtained with the Multiple Signal Classification (MUSIC) algorithm. Simulations of radar backscatter using surface currents from the Regional Ocean Modeling System show a close correspondence between direction of arrival (DOA) errors and estimated uncertainties, with mean values of 15° at 10 dB, falling to less than 3° at 30 dB. Observations from two operational SeaSondes have average DOA uncertainties of 2.7° and 3.8°, with a fraction of the observations (10.5% and 7.1%, respectively) having uncertainties of 〉10°. Using DOA uncertainties for data quality control improves time series comparison statistics between the two radars, with r2=0.6 increasing to r2=0.75 and RMS difference decreasing from 15 to 12 cm s−1. The analysis illustrates the major sources of error in oceanographic HF radars and suggests that the DOA uncertainties are suitable for assimilation into numerical models.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2007-04-01
    Description: Dense arrays of surface drifters are used to quantify the flow field on time and space scales over which high-frequency (HF) radar observations are measured. Up to 13 drifters were repetitively deployed off the Santa Barbara and San Diego coasts on 7 days during 18 months. Each day a regularly spaced grid overlaid on a 1-km2 (San Diego) or 4-km2 (Santa Barbara) square, located where HF radar radial data are nearly orthogonal, was seeded with drifters. As drifters moved from the square, they were retrieved and replaced to maintain a spatially uniform distribution of observations within the sampling area during the day. This sampling scheme resulted in up to 56 velocity observations distributed over the time (1 h) and space (1 and 4 km2) scales implicit in typical surface current maps from HF radar. Root-mean-square (RMS) differences between HF radar radial velocities obtained using measured antenna patterns, and average drifter velocities, are mostly 3–5 cm s−1. Smaller RMS differences compared with past validation studies that employ current meters are due to drifter resolution of subgrid-scale velocity variance included in time and space average HF radar fields. Roughly 5 cm s−1 can be attributed to sampling on disparate time and space scales. Despite generally good agreement, differences can change dramatically with time. In one instance, the difference increases from near zero to more than 20 cm s−1 within 2 h. The RMS difference and bias (mean absolute difference) for that day exceed 7 and 12 cm s−1, respectively.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-07-01
    Description: HF radars measure ocean surface currents near coastlines with a spatial and temporal resolution that remains unmatched by other approaches. Most HF radars employ direction-finding techniques, which obtain the most accurate ocean surface current data when using measured, rather than idealized, antenna patterns. Simplifying and automating the antenna pattern measurement (APM) process would improve the utility of HF radar data, since idealized patterns are widely used. A method is presented for obtaining antenna pattern measurements for direction-finding HF radars from ships of opportunity. Positions obtained from the Automatic Identification System (AIS) are used to identify signals backscattered from ships in ocean current radar data. These signals and ship position data are then combined to determine the HF radar APM. Data screening methods are developed and shown to produce APMs with low error when compared with APMs obtained with shipboard transponder-based approaches. The analysis indicates that APMs can be reproduced when the signal-to-noise ratio (SNR) of the backscattered signal is greater than 11 dB. Large angular sectors of the APM can be obtained on time scales of days, with as few as 50 ships.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-05-01
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...