ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 9 (1965), S. 3845-3850 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: During a program to evaluate the gel permeation chromatography (GPC) technique for measuring the molecular size distribution of polymers, three experimental epichlorohydrin-bisphenol A polymers were sent to Waters Associates for analysis with the commercially available instrument. The resulting distribution curves were used to calculate weight-average and number-average chain lengths of the samples. These values were found to give good straight-line correlations with weight-average and number-average molecular weights measured by absolute methods. Thus the GPC method gives meaningful information about the molecular size distribution of polymers which can be used to obtain rapid estimates of molecular weight.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-09-28
    Description: Vegetation emits large quantities of biogenic volatile organic compounds (BVOC). At remote sites, these compounds are the dominant precursors to ozone and secondary organic aerosol (SOA) production, yet current field studies show that atmospheric models have difficulty in capturing the observed HOx cycle and concentrations of BVOC oxidation products. In this manuscript, we simulate BVOC chemistry within a forest canopy using a one-dimensional canopy-chemistry model (Canopy Atmospheric CHemistry Emission model; CACHE) for a mixed deciduous forest in northern Michigan during the CABINEX 2009 campaign. We find that the base-case model, using fully-parameterized mixing and the simplified biogenic chemistry of the Regional Atmospheric Chemistry Model (RACM), underestimates daytime in-canopy vertical mixing by 50–70% and by an order of magnitude at night, leading to discrepancies in the diurnal evolution of HOx, BVOC, and BVOC oxidation products. Implementing observed micrometeorological data from above and within the canopy substantially improves the diurnal cycle of modeled BVOC, particularly at the end of the day, and also improves the observation-model agreement for some BVOC oxidation products and OH reactivity. We compare the RACM mechanism to a version that includes the Mainz isoprene mechanism (RACM-MIM) to test the model sensitivity to enhanced isoprene degradation. RACM-MIM simulates higher concentrations of both primary BVOC (isoprene and monoterpenes) and oxidation products (HCHO, MACR+MVK) compared with RACM simulations. Additionally, the revised mechanism alters the OH concentrations and increases HO2. These changes generally improve agreement with HOx observations yet overestimate BVOC oxidation products, indicating that this isoprene mechanism does not improve the representation of local chemistry at the site. Overall, the revised mechanism yields smaller changes in BVOC and BVOC oxidation product concentrations and gradients than improving the parameterization of vertical mixing with observations, suggesting that uncertainties in vertical mixing parameterizations are an important component in understanding observed BVOC chemistry.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-05-22
    Description: Vegetation emits large quantities of biogenic volatile organic compounds (BVOC). At remote sites, these compounds are the dominant precursors to ozone and secondary organic aerosol (SOA) production, yet current field studies show that atmospheric models have difficulty in capturing the observed HOx cycle and concentrations of BVOC oxidation products. In this manuscript, we simulate BVOC chemistry within a forest canopy using a one-dimensional canopy-chemistry model (Canopy Atmospheric CHemistry Emission model; CACHE) for a mixed deciduous forest in northern Michigan during the CABINEX 2009 campaign. We find that the base-case model, using fully-parameterized mixing and the simplified biogenic chemistry of the Regional Atmospheric Chemistry Model (RACM), underestimates daytime in-canopy vertical mixing by 50–70% and by an order of magnitude at night, leading to discrepancies in the diurnal evolution of HOx, BVOC, and BVOC oxidation products. Implementing observed micrometeorological data from above and within the canopy substantially improves the diurnal cycle of modeled BVOC, particularly at the end of the day, and also improves the observation-model agreement for some BVOC oxidation products and OH reactivity. We compare the RACM mechanism to a version that includes the Mainz isoprene mechanism (RACM-MIM) to test the model sensitivity to enhanced isoprene degradation. RACM-MIM simulates higher concentrations of both primary BVOC (isoprene and monoterpenes) and oxidation products (HCHO, MACR + MVK) compared with RACM simulations. Additionally, the revised mechanism alters the OH concentrations and increases HO2. These changes generally improve agreement with HOx observations yet overestimate BVOC oxidation products, indicating that this isoprene mechanism does not improve the representation of local chemistry at the site. Overall, the revised mechanism yields smaller changes in BVOC and BVOC oxidation product concentrations and gradients than improving the parameterization of vertical mixing with observations, suggesting that uncertainties in vertical mixing parameterizations are an important component in understanding observed BVOC chemistry.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-01-18
    Description: An improved method for the measurement of hydroperoxy radicals (HO2) and organic peroxy radicals (RO2, where R is any organic group) has been developed that combines two previous chemical conversion/chemical ionization mass spectrometry (CIMS) peroxy radical measurement techniques. Applicable to both ground-based and aircraft platforms, the method provides good separation between HO2 and RO2 and frequent measurement capability with observations of both HO2 and HO2+RO2 amounts each minute. This allows for analyses of measured [HO2]/[HO2+RO2] ratios on timescales relevant to tropospheric photochemistry. By varying both [NO] and [O2] simultaneously in the chemical conversion region of the PeRCIMS (Peroxy Radical CIMS) inlet, the method exploits the changing conversion efficiency of RO2 to HO2 under different inlet [NO]/[O2] to selectively observe either primarily HO2 or the sum of HO2 and RO2. Two modes of operation have been established for ambient measurements: in the first half of the minute, RO2 radicals are measured at close to 100% efficiency along with HO2 radicals (low [NO]/[O2] = 2.53×10−5) and in the second half of the minute, HO2 is detected while the majority of ambient RO2 radicals are measured with low efficiency, approximately 15% (high [NO]/[O2] = 6.80×10−4). The method has been tested extensively in the laboratory under various conditions and for a variety of organic peroxy radicals relevant to the atmosphere and the results of these tests are presented. The modified PeRCIMS instrument has been deployed successfully using the new measurement technique on a number of aircraft campaigns, including on the NSF/NCAR C-130 during the MIRAGE-Mex and NASA INTEX-B field campaigns in the spring of 2006. A brief comparison of the peroxy radical measurements during these campaigns to a photochemical box model indicates good agreement under tropospheric conditions where NOx (NO+NO2) concentrations are lower than 0.5 ppbV (parts per billion by volume).
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-09-28
    Description: An improved method for the measurement of hydroperoxy radicals (HO2) and organic peroxy radicals (RO2, where R is any organic group) has been developed that combines two previous chemical conversion/chemical ionization mass spectrometry (CIMS) peroxy radical measurement techniques. Applicable to both ground-based and aircraft platforms, the method provides good separation between HO2 and RO2 and frequent measurement capability with observations of both HO2 and HO2 + RO2 amounts each minute. This allows for analyses of measured [HO2]/[HO2 + RO2] ratios on timescales relevant to tropospheric photochemistry. By varying both [NO] and [O2] simultaneously in the chemical conversion region of the PeRCIMS (Peroxy Radical CIMS) inlet, the method exploits the changing conversion efficiency of RO2 to HO2 under different inlet [NO]/[O2] to selectively observe either primarily HO2 or the sum of HO2 and RO2. Two modes of operation have been established for ambient measurements: in the first half of the minute, RO2 radicals are measured at close to 100% efficiency along with HO2 radicals (low [NO]/[O2] = 2.53 × 10−5) and in the second half of the minute, HO2 is detected while the majority of ambient RO2 radicals are measured with approximately 15% efficiency (high [NO]/[O2] = 6.80 × 10−4). The method has been tested extensively in the laboratory under various conditions and for a variety of organic peroxy radicals relevant to the atmosphere and the results of these tests are presented. The modified PeRCIMS instrument has been deployed successfully using the current measurement technique on a number of aircraft campaigns, including on the NSF/NCAR C-130 during the MIRAGE-Mex and NASA INTEX-B field campaigns in the spring of 2006. A brief comparison of the peroxy radical measurements during these campaigns to a photochemical box model confirms that the PeRCIMS is able to successfully separate and measure HO2 and RO2 under the majority of tropospheric conditions.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-04-14
    Description: An improved method for the measurement of hydroperoxy radicals (HO2) and organic peroxy radicals (RO2, where R is any organic group) has been developed that combines two previous chemical conversion/chemical ionization mass spectrometry (CIMS) peroxy radical measurement techniques. Applicable to both ground-based and aircraft platforms, the method provides good separation between HO2 and RO2, and frequent measurement capability with observations of both HO2 and HO2 + RO2 amounts each minute. These improvements allow for analyses of measured [HO2]/[HO2 + RO2] ratios on timescales relevant to tropospheric photochemistry. By varying both [NO] and [O2] simultaneously in the chemical conversion region of the PeRCIMS (Peroxy Radical CIMS) inlet, the method exploits the changing conversion efficiency of RO2 to HO2 under different inlet [NO]/[O2] to selectively observe either primarily HO2 or the sum of HO2 and RO2. Two modes of operation have been established for ambient measurements: in the first half of the minute, RO2 radicals are measured at close to 100% efficiency along with HO2 radicals (low [NO]/[O2] = 2.53 × 10−5) and in the second half of the minute, HO2 is detected while the majority of ambient RO2 radicals are measured with low efficiency, approximately 15% (high [NO]/[O2] = 6.80 × 10−4). The method has been tested extensively in the laboratory under various conditions and for a variety of organic peroxy radicals relevant to the atmosphere and the results of these tests are presented. The modified PeRCIMS instrument has been deployed successfully using the new measurement technique on a number of aircraft campaigns, including on the NSF/NCAR C-130 during the MIRAGE-Mex and NASA INTEX-B field campaigns in the spring of 2006. A brief comparison of the peroxy radical measurements during these campaigns to a photochemical box model indicates good agreement under tropospheric conditions where NOx (NO + NO2) concentrations are lower than 0.5 ppbV (parts per billion by volume).
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-09-05
    Description: Biological volatile organic compounds (BVOCs), such as isoprene and monoterpenes, are emitted in large amounts from forests. Quantification of the flux of BVOCs is critical in the evaluation of the impact of these compounds on the concentrations of atmospheric oxidants and on the production of secondary organic aerosol. A disjunct eddy accumulation (DEA) sampler system was constructed for the measurement of speciated BVOC fluxes. Unlike traditional eddy covariance (EC), the relatively new technique of disjunct sampling differs by taking short, discrete samples that allow for slower sampling frequencies. Disjunct sample airflow is directed into cartridges containing sorbent materials at sampling rates proportional to the magnitude of the vertical wind. Compounds accumulated on the cartridges are then quantified by thermal desorption and gas chromatography. Herein, we describe our initial tests to evaluate the disjunct sampler including the application of vertical wind measurements to create optimized sampling thresholds. Measurements of BVOC fluxes obtained from DEA during its deployment above a mixed hardwood forest at the University of Michigan Biological Station (Pellston, MI) during the 2009 CABINEX field campaign are reported. Daytime (09:00 a.m. to 05:00 p.m. LT) isoprene fluxes, when averaged over the footprint of the tower, were 1.31 mg m−2 h−1 which are comparable to previous flux measurements at this location. Speciated monoterpene fluxes are some of the first to be reported from this site. Daytime averages were 26.7 μg m−2 h−1 for α-pinene and 10.6 μg m−2 h−1 for β-pinene. These measured concentrations and fluxes were compared to the output of an atmospheric chemistry model, and were found to be consistent with our knowledge of the variables that control BVOCs fluxes at this site.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-04-04
    Description: Biological volatile organic compounds (BVOCs), such as isoprene and monoterpenes, are emitted in large amounts from forests. Quantification of the flux of BVOCs is critical in the evaluation of the impact of these compounds on the concentrations of atmospheric oxidants and on the production of secondary organic aerosol. A disjunct eddy accumulation (DEA) sampler system was constructed for the measurement of speciated BVOC fluxes. Unlike traditional eddy covariance (EC), the relatively new technique of disjunct sampling differs by taking short, discrete samples that allows for slower sampling frequencies. Disjunct sample airflow is directed into cartridges containing sorbent materials at sampling rates proportional to the magnitude of the vertical wind. Compounds accumulated on the cartridges are then quantified by thermal desorption and gas chromatography. Herein, we describe our initial tests to evaluate the disjunct sampler including the application of using vertical wind measurements to create optimized sampling thresholds. Measurements of BVOC fluxes obtained from DEA during its deployment above a mixed hardwood forest at the University of Michigan Biological Station (Pellston, MI) during the 2009 CABINEX field campaign are reported. Daytime (09:00 a.m. to 05:00 p.m.) isoprene fluxes, when averaged over the footprint of the tower were 1.31 mg m−2 h−1 which is comparable to previous flux measurements at this location. Speciated monoterpene fluxes are some of the first to be reported from this site. Daytime averages were 26.7 μg m−2 h−1 for α-pinene and 10.6 μg m−2 h−1 for β-pinene. These measured concentrations and fluxes were compared to the output of an atmospheric chemistry model, and were found to be consistent with our knowledge of the variables that control BVOCs fluxes at this site.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-27
    Description: Techniques of computer calculations used to analyze the potential for improving visual acquisition of collision threats by means of Pilot Warning Indicator systems (PWI) are described. The quantitative effects of PWI resolution and effective range upon the average cumulative probability of detection are presented.
    Keywords: NAVIGATION
    Type: NASA-CR-126669 , SIO-REF-72-3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...