ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-04-25
    Description: The cellular machinery promoting phagocytosis of corpses of apoptotic cells is well conserved from worms to mammals. An important component is the Caenorhabditis elegans engulfment receptor CED-1 (ref. 1) and its Drosophila orthologue, Draper. The CED-1/Draper signalling pathway is also essential for the phagocytosis of other types of 'modified self' including necrotic cells, developmentally pruned axons and dendrites, and axons undergoing Wallerian degeneration. Here we show that Drosophila Shark, a non-receptor tyrosine kinase similar to mammalian Syk and Zap-70, binds Draper through an immunoreceptor tyrosine-based activation motif (ITAM) in the Draper intracellular domain. We show that Shark activity is essential for Draper-mediated signalling events in vivo, including the recruitment of glial membranes to severed axons and the phagocytosis of axonal debris and neuronal cell corpses by glia. We also show that the Src family kinase (SFK) Src42A can markedly increase Draper phosphorylation and is essential for glial phagocytic activity. We propose that ligand-dependent Draper receptor activation initiates the Src42A-dependent tyrosine phosphorylation of Draper, the association of Shark and the activation of the Draper pathway. These Draper-Src42A-Shark interactions are strikingly similar to mammalian immunoreceptor-SFK-Syk signalling events in mammalian myeloid and lymphoid cells. Thus, Draper seems to be an ancient immunoreceptor with an extracellular domain tuned to modified self, and an intracellular domain promoting phagocytosis through an ITAM-domain-SFK-Syk-mediated signalling cascade.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2493287/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2493287/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ziegenfuss, Jennifer S -- Biswas, Romi -- Avery, Michelle A -- Hong, Kyoungja -- Sheehan, Amy E -- Yeung, Yee-Guide -- Stanley, E Richard -- Freeman, Marc R -- 1R01CA26504/CA/NCI NIH HHS/ -- 1R01GM55293/GM/NIGMS NIH HHS/ -- 1R01NS053538/NS/NINDS NIH HHS/ -- R37 CA026504/CA/NCI NIH HHS/ -- R37 CA026504-30/CA/NCI NIH HHS/ -- England -- Nature. 2008 Jun 12;453(7197):935-9. doi: 10.1038/nature06901. Epub 2008 Apr 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605-2324, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18432193" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Axons/metabolism/pathology ; Cell Line ; Cell Membrane/metabolism ; Central Nervous System ; Drosophila Proteins/chemistry/*metabolism ; Intracellular Signaling Peptides and Proteins/*metabolism ; Membrane Proteins/chemistry/*metabolism ; Neuroglia/*cytology ; *Phagocytosis ; Phosphorylation ; Protein Binding ; Protein Structure, Tertiary ; Protein Transport ; Protein-Tyrosine Kinases/*metabolism ; Proto-Oncogene Proteins pp60(c-src)/*metabolism ; *Signal Transduction ; Two-Hybrid System Techniques
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-04-12
    Description: Under stress conditions such as infection or inflammation the body rapidly needs to generate new blood cells that are adapted to the challenge. Haematopoietic cytokines are known to increase output of specific mature cells by affecting survival, expansion and differentiation of lineage-committed progenitors, but it has been debated whether long-term haematopoietic stem cells (HSCs) are susceptible to direct lineage-specifying effects of cytokines. Although genetic changes in transcription factor balance can sensitize HSCs to cytokine instruction, the initiation of HSC commitment is generally thought to be triggered by stochastic fluctuation in cell-intrinsic regulators such as lineage-specific transcription factors, leaving cytokines to ensure survival and proliferation of the progeny cells. Here we show that macrophage colony-stimulating factor (M-CSF, also called CSF1), a myeloid cytokine released during infection and inflammation, can directly induce the myeloid master regulator PU.1 and instruct myeloid cell-fate change in mouse HSCs, independently of selective survival or proliferation. Video imaging and single-cell gene expression analysis revealed that stimulation of highly purified HSCs with M-CSF in culture resulted in activation of the PU.1 promoter and an increased number of PU.1(+) cells with myeloid gene signature and differentiation potential. In vivo, high systemic levels of M-CSF directly stimulated M-CSF-receptor-dependent activation of endogenous PU.1 protein in single HSCs and induced a PU.1-dependent myeloid differentiation preference. Our data demonstrate that lineage-specific cytokines can act directly on HSCs in vitro and in vivo to instruct a change of cell identity. This fundamentally changes the current view of how HSCs respond to environmental challenge and implicates stress-induced cytokines as direct instructors of HSC fate.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679883/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679883/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mossadegh-Keller, Noushine -- Sarrazin, Sandrine -- Kandalla, Prashanth K -- Espinosa, Leon -- Stanley, E Richard -- Nutt, Stephen L -- Moore, Jordan -- Sieweke, Michael H -- CA 32551/CA/NCI NIH HHS/ -- R01 CA032551/CA/NCI NIH HHS/ -- England -- Nature. 2013 May 9;497(7448):239-43. doi: 10.1038/nature12026. Epub 2013 Apr 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Universite, UM2, Campus de Luminy, Case 906, 13288 Marseille Cedex 09, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23575636" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation/*drug effects ; Cell Lineage/*drug effects ; Cell Proliferation/drug effects ; Cell Survival/drug effects ; Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology ; Hematopoietic Stem Cells/*cytology/*drug effects ; Macrophage Colony-Stimulating Factor/*pharmacology ; Mice ; Mice, Inbred C57BL ; Myeloid Cells/*cytology/*drug effects ; Promoter Regions, Genetic/genetics ; Proto-Oncogene Proteins/biosynthesis/genetics/metabolism ; Single-Cell Analysis ; Trans-Activators/biosynthesis/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-10-23
    Description: Microglia are the resident macrophages of the central nervous system and are associated with the pathogenesis of many neurodegenerative and brain inflammatory diseases; however, the origin of adult microglia remains controversial. We show that postnatal hematopoietic progenitors do not significantly contribute to microglia homeostasis in the adult brain. In contrast to many macrophage populations, we show that microglia develop in mice that lack colony stimulating factor-1 (CSF-1) but are absent in CSF-1 receptor-deficient mice. In vivo lineage tracing studies established that adult microglia derive from primitive myeloid progenitors that arise before embryonic day 8. These results identify microglia as an ontogenically distinct population in the mononuclear phagocyte system and have implications for the use of embryonically derived microglial progenitors for the treatment of various brain disorders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3719181/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3719181/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ginhoux, Florent -- Greter, Melanie -- Leboeuf, Marylene -- Nandi, Sayan -- See, Peter -- Gokhan, Solen -- Mehler, Mark F -- Conway, Simon J -- Ng, Lai Guan -- Stanley, E Richard -- Samokhvalov, Igor M -- Merad, Miriam -- AI080884/AI/NIAID NIH HHS/ -- CA112100/CA/NCI NIH HHS/ -- CA26504/CA/NCI NIH HHS/ -- CA32551/CA/NCI NIH HHS/ -- HL086899/HL/NHLBI NIH HHS/ -- MH66290/MH/NIMH NIH HHS/ -- NS38902/NS/NINDS NIH HHS/ -- P60 DK020541/DK/NIDDK NIH HHS/ -- R01 CA032551/CA/NCI NIH HHS/ -- R01 HL060714/HL/NHLBI NIH HHS/ -- R01 HL060714-13/HL/NHLBI NIH HHS/ -- R37 CA026504/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2010 Nov 5;330(6005):841-5. doi: 10.1126/science.1194637. Epub 2010 Oct 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Gene and Cell Medicine and the Immunology Institute, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA. Florent_ginhoux@immunol.a-star.edu.sg〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20966214" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*cytology/embryology ; Cell Differentiation ; Cell Lineage ; Cell Proliferation ; Core Binding Factor Alpha 2 Subunit/genetics/metabolism ; Embryo, Mammalian/cytology/physiology ; Female ; Gene Knock-In Techniques ; Hematopoiesis ; Hematopoietic Stem Cells/cytology ; Homeostasis ; Macrophage Colony-Stimulating Factor/metabolism ; Macrophages/*cytology ; Mice ; Mice, Inbred C57BL ; Microglia/*cytology ; Myeloid Progenitor Cells/*cytology ; Receptor, Macrophage Colony-Stimulating Factor/metabolism ; Yolk Sac/cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 274 (1978), S. 168-170 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Mouse L cell conditioned medium containing 10% fetal calf serum (FCS) was prepared as described previously9 using the L60T clonal isolate of mouse L cells10. Purified mouse L cell CSF (1.5 x 108 units (ref. 11) per mg protein)3, highly purified human urinary CSF (5 x 107 units per mg protein)5 as ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1572-9931
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The osteopetrotic (op/op) mouse lacks colony stimulating factor-1 (CSF-1) due to an inactivating mutation in the CSF-1 gene. Intramuscular transplantation of engineered myoblasts was used to introduce CSF-1 into the circulation ofop/op mice. The CSF-1 cDNA was introduced into C2C12 mouse myoblasts in culture using retroviral mediated gene transfer. Upon transplantation into the skeletal muscle of mutant mice, physiological levels of the cytokine were achieved systemically and elicited a biological response: circulating monocytes were induced. However, both circulating CSF-1 levels and the induction of monocytes were transient. Analysis of the site of cell transplantation revealed local changes that may account for the transience of serum cytokine levels. Macrophage markers were induced in muscle tissue implanted with CSF-1 expressing myoblasts:c-fms, the CSF-1 receptor as well as the lineage-restricted antigen F4/80. We propose that in addition to CSF-1 clearance by Kupffer cells of the liver, macrophages that accumulated at the site of cell transplantation bound the CSF-1 produced by the muscle cell transplants, precluding the sustained release of this cytokine into the systemic circulation. Our studies also revealed that damage to muscle caused during cell transplantation or by freeze injury resulted in the accumulation of macrophages inop/op mouse muscle tissue. Indeed,op/op mice were fully capable of regenerating injured muscle suggesting the presence of as yet unidentified CSF-1-independent factors capable of generating macrophages that presumably participate in tissue remodeling in this cytokine-deficient mouse.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 21 (1983), S. 151-159 
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 132 (1987), S. 367-370 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Highly purified colony-stimulating factor-1 induced thromboplastin activity in murine macrophages and human monocytes in vitro. The activity increase was inhibited by cycloheximide and prevented by antibodies to CSF-1.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Possible tissue sources in C57BL mice of the serum factor stimulating colony formation in vitro by mouse bone marrow cells have been investigated.A reproducible technique employing batch chromatography on calcium phosphate gel was developed for the extraction and assay of material with colony stimulating activity from mouse tissues. Sixteen hematopoietic and non-hematopoietic tissues from C57BL mice were found to vary widely in their content of extractable activity. Characterisation of the colony stimulating factors (CSF's) from these tissues by assay of stepped concentrations of eluate showed that CSF's from most tissues were similar in chromatographic behavior, but all differed significantly from those of serum in being both more disperse and more firmly bound to calcium phosphate gel. Male submaxillary salivary gland gave the richest yield of CSF. CSF from this source displayed a greater dispersity on and affinity to calcium phosphate, a lower electrophoretic mobility and a smaller average sedimentation coefficient than that from any other source investigated. Colony morphology appeared to be identical for all tissue sources investigated.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 103 (1980), S. 435-445 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Colony-stimulating factors (CSFs) stimulate granulocyte-macrophage production from single hemopoietic progenitor cells. Various preparations of purified CSFs of two different subclasses have been shown here to stimulate a plasminogen-dependent fibrinolytic (plasminogen activator) activity from resident and starch-induced mouse peritoneal macrophages. Lymphocyte supernatants also stimulate macrophage plasminogen activator (PA) activitty. Since they contain colony stimulating activity, it is possible that one or more sublcasses of CSF in these supernatants is responsible for this effect. Since both colony-stimulating and macrophage growth activities have been detected at inflammatory sites, these findings could reflect a role for CSF in inflammatory processes.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 104 (1980), S. 359-366 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Utilizing the high affinity interactions between pure 125I-L cell colony stimulating factor and its receptor(s) on the murine macrophage cell line J774, a murine radioreceptor assay (RRA) has been developed. The murine RRA selectively detects a colony stimulating factor (CSF) subclass (CSF-1) previously defined by murine radioimmunoassay (RIA) (E.R. Stanley, Proc. Nat. Acad. Sci., USA, 76:2969-2973 ('79)). CSF-1 stimulates macrophage production exclusively, and the occurrence of the CSF-1 receptor(s) appears to be restricted to cells of the mononuclear phagocytic system (L.J. Guilbert and E.R. Stanley, J. Cell Biol. 85:153-160 ('80)). The murine CSF-1 RRA failed to detect a variety of other CSF subclasses, growth factors, and hormones. In contrast to data obtained with the murine CSF-1 RIA, human CSF-1 (e.g., human urinary CSF) is detected by the mouse CSF-1 RRA almost as sensitively as murine CSF-1. In addition, there was an absolute correlation between CSF-1 levels determined by murine CSF-1 RRA and those determined by a human CSF-1 RIA for a variety of human CSF-1 sources. The murine CSF-1 RRA is a sensitive (sensitivity 5 units or 1.0 femtomole of CSF-1 protein), rapid, and highly specific assay for CSF-1 in both murine and human sources.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...