ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-08-27
    Description: Centromeres are specified epigenetically, and the histone H3 variant CENP-A is assembled into the chromatin of all active centromeres. Divergence from H3 raises the possibility that CENP-A generates unique chromatin features to mark physically centromere location. Here we report the crystal structure of a subnucleosomal heterotetramer, human (CENP-A-H4)(2), that reveals three distinguishing properties encoded by the residues that comprise the CENP-A targeting domain (CATD; ref. 2): (1) a CENP-A-CENP-A interface that is substantially rotated relative to the H3-H3 interface; (2) a protruding loop L1 of the opposite charge as that on H3; and (3) strong hydrophobic contacts that rigidify the CENP-A-H4 interface. Residues involved in the CENP-A-CENP-A rotation are required for efficient incorporation into centromeric chromatin, indicating specificity for an unconventional nucleosome shape. DNA topological analysis indicates that CENP-A-containing nucleosomes are octameric with conventional left-handed DNA wrapping, in contrast to other recent proposals. Our results indicate that CENP-A marks centromere location by restructuring the nucleosome from within its folded histone core.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946842/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946842/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sekulic, Nikolina -- Bassett, Emily A -- Rogers, Danielle J -- Black, Ben E -- GM08275/GM/NIGMS NIH HHS/ -- GM82989/GM/NIGMS NIH HHS/ -- R01 GM082989/GM/NIGMS NIH HHS/ -- R01 GM082989-01A1/GM/NIGMS NIH HHS/ -- R01 GM082989-02/GM/NIGMS NIH HHS/ -- R01 GM082989-03/GM/NIGMS NIH HHS/ -- T32 GM008275/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Sep 16;467(7313):347-51. doi: 10.1038/nature09323. Epub 2010 Aug 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania 19104-6059, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20739937" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Autoantigens/*chemistry/*metabolism ; Binding Sites ; Centromere/*chemistry/*metabolism ; Chromatin Assembly and Disassembly ; Chromosomal Proteins, Non-Histone/*chemistry/*metabolism ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; Deuterium Exchange Measurement ; Epistasis, Genetic ; Histones/*chemistry/*metabolism ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; Nucleosomes/chemistry/metabolism ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Rotation ; Scattering, Small Angle ; Structure-Activity Relationship ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-02-02
    Description: Norrie disease (ND) is a congenital disorder characterized by retinal hypovascularization and cognitive delay. ND has been linked to mutations in ‘Norrie Disease Protein’ ( Ndp ), which encodes the secreted protein Norrin. Norrin functions as a secreted angiogenic factor, although its role in neural development has not been assessed. Here, we show that Ndp expression is initiated in retinal progenitors in response to Hedgehog (Hh) signaling, which induces Gli2 binding to the Ndp promoter. Using a combination of genetic epistasis and acute RNAi-knockdown approaches, we show that Ndp is required downstream of Hh activation to induce retinal progenitor proliferation in the retina. Strikingly, Ndp regulates the rate of cell-cycle re-entry and not cell-cycle kinetics, thereby uncoupling the self-renewal and cell-cycle progression functions of Hh. Taken together, we have uncovered a cell autonomous function for Ndp in retinal progenitor proliferation that is independent of its function in the retinal vasculature, which could explain the neural defects associated with ND.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...