ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2020-08-28
    Description: Single image super-resolution (SISR) is a traditional image restoration problem. Given an image with low resolution (LR), the task of SISR is to find the homologous high-resolution (HR) image. As an ill-posed problem, there are works for SISR problem from different points of view. Recently, deep learning has shown its amazing performance in different image processing tasks. There are works for image super-resolution based on convolutional neural network (CNN). In this paper, we propose an adaptive residual channel attention network for image super-resolution. We first analyze the limitation of residual connection structure and propose an adaptive design for suitable feature fusion. Besides the adaptive connection, channel attention is proposed to adjust the importance distribution among different channels. A novel adaptive residual channel attention block (ARCB) is proposed in this paper with channel attention and adaptive connection. Then, a simple but effective upscale block design is proposed for different scales. We build our adaptive residual channel attention network (ARCN) with proposed ARCBs and upscale block. Experimental results show that our network could not only achieve better PSNR/SSIM performances on several testing benchmarks but also recover structural textures more effectively.
    Print ISSN: 1058-9244
    Electronic ISSN: 1875-919X
    Topics: Computer Science , Media Resources and Communication Sciences, Journalism
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-06-13
    Description: In many scheduling studies, researchers consider the processing times of jobs as constant numbers. This assumption sometimes is at odds with practical manufacturing process due to several sources of uncertainties arising from real-life situations. Examples are the changing working environments, machine breakdowns, tool quality variations and unavailability, and so on. In light of the phenomenon of scenario-dependent processing times existing in many applications, this paper proposes to incorporate scenario-dependent processing times into a two-machine flow-shop environment with the objective of minimizing the total completion time. The problem under consideration is never explored. To solve it, we first derive a lower bound and two optimality properties to enhance the searching efficiency of a branch-and-bound method. Then, we propose 12 simple heuristics and their corresponding counterparts improved by a pairwise interchange method. Furthermore, we set proposed 12 simple heuristics as the 12 initial seeds to design 12 variants of a cloud theory-based simulated annealing (CSA) algorithm. Finally, we conduct simulations and report the performances of the proposed branch-and-bound method, the 12 heuristics, and the 12 variants of CSA algorithm.
    Print ISSN: 1026-0226
    Electronic ISSN: 1607-887X
    Topics: Mathematics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-10
    Description: Facial beauty prediction (FBP) is a burgeoning issue for attractiveness evaluation, which aims to make assessment consistent with human opinion. Since FBP is a regression problem, to handle this issue, there are data-driven methods for finding the relations between facial features and beauty assessment. Recently, deep learning methods have shown its amazing capacity for feature representation and analysis. Convolutional neural networks (CNNs) have shown tremendous performance on facial recognition and comprehension, which are proved as an effective method for facial feature exploration. Lately, there are well-designed networks with efficient structures investigated for better representation performance. However, these designs concentrate on the effective block but do not build an efficient information transmission pathway, which led to a sub-optimal capacity for feature representation. Furthermore, these works cannot find the inherent correlations of feature maps, which also limits the performance. In this paper, an elaborate network design for FBP issue is proposed for better performance. A residual-in-residual (RIR) structure is introduced to the network for passing the gradient flow deeper, and building a better pathway for information transmission. By applying the RIR structure, a deeper network can be established for better feature representation. Besides the RIR network design, an attention mechanism is introduced to exploit the inner correlations among features. We investigate a joint spatial-wise and channel-wise attention (SCA) block to distribute the importance among features, which finds a better representation for facial information. Experimental results show our proposed network can predict facial beauty closer to a human’s assessment than state-of-the-arts.
    Electronic ISSN: 2078-2489
    Topics: Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-10-22
    Description: To classify the image material on the internet, the deep learning methodology, especially deep neural network, is the most optimal and costliest method of all computer vision methods. Convolutional neural networks (CNNs) learn a comprehensive feature representation by exploiting local information with a fixed receptive field, demonstrating distinguished capacities on image classification. Recent works concentrate on efficient feature exploration, which neglect the global information for holistic consideration. There is large effort to reduce the computational costs of deep neural networks. Here, we provide a hierarchical global attention mechanism that improve the network representation with restricted increase of computation complexity. Different from nonlocal-based methods, the hierarchical global attention mechanism requires no matrix multiplication and can be flexibly applied in various modern network designs. Experimental results demonstrate that proposed hierarchical global attention mechanism can conspicuously improve the image classification precision—a reduction of 7.94% and 16.63% percent in Top 1 and Top 5 errors separately—with little increase of computation complexity (6.23%) in comparison to competing approaches.
    Electronic ISSN: 1999-5903
    Topics: Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-01-01
    Description: We consider a scheduling problem in which both resource dependent release times and two agents exist simultaneously. Two agents share a common single machine, and each agent wants to minimize a cost function dependent on its own jobs. The release time of eachA-agent’s job is related to the amount of resource consumed. The objective is to find a schedule for the problem of minimizingA-agent’s total amount of resource consumption with a constraint onB-agent’s makespan. The optimal properties and the optimal polynomial time algorithm are proposed to solve the scheduling problem.
    Print ISSN: 1026-0226
    Electronic ISSN: 1607-887X
    Topics: Mathematics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...