ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2019-09-24
    Description: We studied the effect of the quorum-sensing (QS) blockers 5-hydroxy-3[(1R)-1-hydroxypropyl]-4-methylfuran-2(5H)-one (FUR1), (5R)-3,4-dihydroxy-5-[(1S)-1,2-dihydroxyethyl]furan-2(5H)-one (FUR2) and triclosan (TRI) on the formation of bacterial biofilms, and the effect of these biofilms on the larval attachment of the polychaete Hydroides elegans and the bryozoan Bugula neritina. 14-day-old subtidal biofilms were harvested from artificial substrata and were allowed to develop in the laboratory with and without QS blockers. QS blockers inhibited the production of violacein by the QS reporter strain Chromobacterium violaceum CV026 and did not affect the metabolic activity of bacteria in multispecies biofilms. At a concentration of 10(-3) M all three tested compounds inhibited the establishment of microbial communities, but at one of 10(-4) M only FUR2 inhibited establishment. The tested QS blockers caused changes in bacterial density and bacterial community structure, as revealed by terminal restriction fragment length polymorphism and FISH. The groups most affected by QS blockers were Alphaproteobacteria, Gammaproteobacteria and the Cytophagales. Larvae of H. elegans and B. neritina avoided settling on biofilms that had developed in the presence of QS blockers. Our results suggest that QS blockers directly control the formation of multi-species biofilms, and indirectly - by means of biofilm properties - affect larval attachment on these modified biofilms.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-01-19
    Description: We investigated the effect of commercially available enzymes (α-amylase, α-galactosidase, papain, trypsin, and lipase) as well as proteases from deep-sea bacteria on the larval attachment of the bryozoan Bugula neritina L. The 50% effective concentrations (EC50) of the commercial proteases were 10 times lower than those of other enzymes. Crude proteases from six deep-sea Pseudoalteromonas species significantly decreased larval attachment at concentrations of 0.03 to 1 mIU ml−1. The EC50 of the pure protease from the bacterium Pseudoalteromonas issachenkonii UST041101-043 was close to 1 ng ml−1 (0.1 mIU ml−1). The protease and trypsin individually incorporated in a water-soluble paint matrix inhibited biofouling in a field experiment. There are certain correlations between production of proteases by bacterial films and inhibition of larval attachment. None of the bacteria with biofilms that induced attachment of B. neritina produced proteolytic enzymes, whereas most of the bacteria that formed inhibitive biofilms produced proteases. Our investigation demonstrated the potential use of proteolytic enzymes for antifouling defense.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-05-24
    Description: Bacterial strains UST030701-097T and UST030701-084T were isolated from a marine sponge in the Bahamas. Both strains were pink-pigmented, Gram-negative, strictly aerobic and chemo-organotrophic. Cells of strain UST030701-097T were short, curved rods with fast-gliding motility, whereas those of strain UST030701-084T were straight rods with a less rapid gliding motion. The two strains had MK-7 as the major respiratory quinone and did not produce flexirubin-type pigments. The DNA G+C contents of strains UST030701-097T and UST030701-084T were 42.5 and 43.7 mol%, respectively. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the two strains belonged to the family 'Flexibacteraceae' of the phylum Bacteroidetes. 16S rRNA gene sequence similarity between strains UST030701-097T and UST030701-084T was 95.0 %; their closest relative was [Marinicola] seohaensis, with 93.3 % and 96.0 % sequence similarity, respectively. Phylogenetic tree topology indicated that the two strains belonged to the same lineage, but were on separate branches. Whilst strain UST030701-084T and [Marinicola] seohaensis were found on one branch, strain UST030701-097T was in another branch that had no species with validly published names. Based on the polyphasic taxonomic data obtained in the present study, we propose that strain UST030701-097T represents a novel genus and that strain UST030701-084T represents a novel species in the phylum Bacteroidetes. The genus Fabibacter gen. nov. is proposed, with strain UST030701-097T (=NRRL B-41220T=JCM 13334T) as the type strain of the type species, Fabibacter halotolerans sp. nov. Strain UST030701-084T (=NRRL B-41219T=JCM 13337T) is proposed as the type strain of Roseivirga spongicola sp. nov. In an earlier study, it was suggested that the genus Marinicola is a later heterotypic synonym of the genus Roseivirga. However, a formal proposal to reclassify [Marinicola] seohaensis, the only member of the genus Marinicola, has not yet been made. The results of phylogenetic analyses in this study support the reclassification of [Marinicola] seohaensis as Roseivirga seohaensis comb. nov.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-03-22
    Description: Quorum sensing (QS) signals have been considered to play important roles in biofilm development and in the attractiveness of biofilms to higher organisms in marine ecosystem. In this study, bacterial QS signalsacylated homoserine lactone derivatives (AHLs) were detected in 2-, 4-, and 6-day-old subtidal biofilms by using AHLs reporter strains. N-dodecanoyl-homoserine lactone (C12-HSL) was identified in 6-day-old biofilm at a concentration of 9.04 μg cm−minus;2 (3.36 mmol l−minus;1). To investigate the possible role of AHLs in the consequent eventlarval settlement of the polychaete Hydroides elegans onto subtidal biofilmsseven biofilm-derived bacteria that effectively induced larval settlement of H. elegans, were screened for AHL production. One of them, the Vibrio sp. UST950701-007, produced N-hexanoyl-homoserine lactone (C6-HSL). Larval settlement bioassay showed that C6-HSL, C12-HSL, and 3-oxo-octanoyl-homoserine lactone (3-oxo-C8-HLS) at certain concentrations induced some initial larval settlement behaviors such as reducing swimming speed, crawling on the bottom. However, these AHLs did not effectively induce larval settlement in comparison to the effective settlement inducer 3-isobutyl-1-methylxanthine. The possible chemokinetic mechanism and indirect effects of AHLs on larval settlement are suggested.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-05-24
    Description: Strain UST040317-058(T), comprising non-pigmented, rod-shaped, facultatively anaerobic, Gram-negative cells that are motile by means of single polar flagella, was isolated from the surface of a marine sponge (Ircinia dendroides) collected from the Mediterranean Sea. Comparative 16S rRNA gene sequence-based phylogenetic analysis placed the strain in a separate cluster with the recognized bacterium Shewanella algae IAM 14159(T), with which it showed a sequence similarity of 95.0 %. The sequence similarity between strain UST040317-058(T) and its other (six) closest relatives ranged from 91.6 to 93.8 %. Strain UST040317-058(T) showed oxidase, catalase and gelatinase activities. The typical respiratory quinones for shewanellas, menaquinone MK-7 and ubiquinones Q-7 and Q-8, were also detected. The predominant fatty acids in strain UST040317-058(T) were i15 : 0, 16 : 0, 17 : 1omega8c and summed feature 3 (comprising i15 : 0 2-OH and/or 16 : 1omega7c), altogether representing 56.9 % of the total. The DNA G+C content was 39.9 mol%. The strain could be differentiated from other Shewanella species by its inability to reduce nitrate or produce H(2)S and by 10-22 additional phenotypic characteristics. On the basis of the phylogenetic and phenotypic data presented in this study, strain UST040317-058(T) represents a novel species in the genus Shewanella, for which the name Shewanella irciniae sp. nov. is proposed. The type strain is UST040317-058(T) (=JCM 13528(T)=NRRL B-41466(T)).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-09-06
    Description: Modern antifouling coatings use heavy metals and toxic organic molecules to prevent biofouling, the undesirable growth of marine organisms on man-made substrata. In an ongoing survey of deep-sea microorganisms aimed at finding low toxic antifouling metabolites, an actinomycete bacterium was isolated from the Pacific sediment at the depth of about 5000 m. The bacterium was closely related to Streptomyces fungicidicus (99% similarity) according to 16S ribosomal RNA sequence information. The spent culture medium of this bacterium inhibited barnacle larval attachment. Bioassay-guided fractionation was employed to isolate antifouling compounds. The ethyl acetate extract was fractionated by using an open silica gel column. Active fractions were further purified on a HPLC C18 column. Five diketopiperazines, cyclo-(L-Leu-L-Pro), cyclo-(L-Phe-L-Pro), cyclo-(L-Val-L-Pro), cyclo-(L-Trp-L-Pro), and cyclo-(L-Leu-L-Val) were isolated for the first time from a deep sea bacterium, and the structures of the compounds were elucidated by nuclear magnetic resonance spectroscopy and mass spectrometry. The pure diketopiperazines were tested for antilarval activity using the barnacle Balanus amphitrite. Effective concentrations that inhibited 50% larval attachment (EC50) after 24 h ranged from 0.10- 0.27 mM. The data suggest that diketopiperazines and other compounds from deep-sea bacteria may be used as novel antifoulants.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-05-24
    Description: A yellow-pigmented, Gram-negative, rod-shaped, strictly aerobic bacterium (strain UST050418-085(T)) was isolated from the surface of a marine sponge, Myxilla incrustans, at Friday Harbor, WA, USA. The DNA G+C content of this strain was 34.6 mol%. The predominant fatty acids were i15 : 0, a15 : 0, i15 : 1, i16 : 0, i17 : 0 3-OH, 17 : 0 2-OH and summed feature 3, comprising i15 : 0 2-OH and/or 16 : 1omega7c (altogether representing 69.0 % of the total fatty acids). MK-6 was the only respiratory quinone detected. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the closest relatives of UST050418-085(T) were members of the genus Gillisia, with sequence similarities of 93.2-96.6 %. Strain UST050418-085(T) differed from its closest relatives by 11 to 18 phenotypic traits. Molecular evidence and phenotypic characteristics suggest that strain UST050418-085(T) represents a novel species within the genus Gillisia. The name Gillisia myxillae sp. nov. is proposed, with UST050418-085(T) (=JCM 13564(T)=NRRL B-41416(T)) [corrected] as the type strain
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-01-19
    Description: In the marine environment, biofilms on submerged surfaces can promote or discourage the settlement of invertebrate larvae and macroalgal spores. The settlement-mediating effects of biofilms are believed to involve a variety of biofilm attributes including surface chemistry, micro-topography, and a wide range of microbial products from small-molecule metabolites to high-molecular weight extracellular polymers. The settled organisms in turn can modify microbial species composition of biofilms and thus change the biofilm properties and dynamics. A better understanding of biofilm dynamics and chemical signals released and/or stored by biofilms will facilitate the development of antifouling and mariculture technologies. This review provides a brief account of 1) existing knowledge of marine biofilms that are relevant to settlement mediation, 2) biotechnological application of biofilms with respect to developing non-toxic antifouling technologies and improving the operation of aquaculture facilities, and 3) challenges and future directions for advancing our understanding of settlement-mediating functions of biofilms and for applying this knowledge to real-life situations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...