ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1984-01-01
    Print ISSN: 0730-2312
    Electronic ISSN: 1097-4644
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 26 (1984), S. 205-220 
    ISSN: 0730-2312
    Keywords: PDGF ; EGF ; receptor ; oncogenes ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Protamine sulfate blocked 125I-PDGF binding to its specific physiological receptor on Swiss mouse 3T3 cells. Reduced 125I-PDGF binding in the presence of protamine sulfate correlated directly with a protamine sulfate dose-dependent decrease in the PDGF-dependent incorporation of [3H]-thymidine into 3T3 cells and a decreased PDGF-stimulated tyrosine-specific protein kinase activity in isolated membrane preparations of 3T3 cells. Protamine sulfate blocked 125I-PDGF binding to simian sarcoma virus transformed cells (SSV-NIH 3T3 and SSV-NPl cells) and to nontransformed cells in a manner qualitatively identical to unlabelled PDGF. In contrast, protamine sulfate enhanced the specific binding of 125I-EGF by increasing the apparent number of EGF receptors on the cell surface. The increase in 125I-EGF receptor binding was not prevented by cycloheximide nor by actinomycin D. Protamine sulfate did not affect 125I-EGF binding to membranes from 3T3 cells or the EGF-stimulated 3T3 cell membrane tyrbsinc specific protein kinase activity, suggesting that protamine sulfate may have exposed a population of cryptic EGF receptors otherwise not accessible. Protamine sulfate was fractionated into four active fractions by Sephadex G-50 gel filtration columns; the half maximum inhibition concentration of 125I-PDGF binding to 3T3 cells of protamines I and II (MW ∼ 11,000 daltons and 7,000 daltons, respectively) is ∼ 0.4 μM. Protamine II (MW ∼ 4,800 daltons) was equally active (half maximum inhibition concentration ∼ 0.4 μM); protamine IV (MW ∼ 3,300 daltons) was substantially less active (half maximum inhibition concentration ∼ 2.8 μM).These investigations have extended previous observations that protamine sulfate is a potent inhibitor of PDGF binding and establish that protamine sulfate blocks PDGF binding at the physiological receptor, preventing PDGF initiated biological activities. Protamine sulfate can be used as a reagent to separate the influence of PDGF and EGF on cells with high specificity and has been used to demonstrate that the receptors on simian sarcoma virus transformed 3T3 cells qualitatively respond identically to protamine sulfate as to unlabelled PDGF and are likely identical to those on nontransformed 3T3 cells.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-02-26
    Description: Enhanced angiogenesis is a hallmark of cancer. Pleiotrophin (PTN) is an angiogenic factor that is produced by many different human cancers and stimulates tumor blood vessel formation when it is expressed in malignant cancer cells. Recent studies show that monocytes may give rise to vascular endothelium. In these studies, we show that PTN combined with macrophage colony-stimulating factor (M-CSF) induces expression of vascular endothelial cell (VEC) genes and proteins in human monocyte cell lines and monocytes from human peripheral blood (PB). Monocytes induce VEC gene expression and develop tube-like structures when they are exposed to serum or cultured with bone marrow (BM) from patients with multiple myeloma (MM) that express PTN, effects specifically blocked with antiPTN antibodies. When coinjected with human MM cells into severe combined immunodeficient (SCID) mice, green fluorescent protein (GFP)–marked human monocytes were found incorporated into tumor blood vessels and expressed human VEC protein markers and genes that were blocked by anti-PTN antibody. Our results suggest that vasculogenesis in human MM may develop from tumoral production of PTN, which orchestrates the transdifferentiation of monocytes into VECs.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2007-11-16
    Description: Recent studies suggest that zoledronic acid (ZOL) and other nitrogen-containing bisphosphonates (BPs) inhibit angiogenesis by reducing angiogenic factor production and signaling by these factors. However, few studies have addressed the potential role of BPs in blocking the formation of new vasculature or so-called vasculogenesis. Thus, we determined whether ZOL could impact this process using a chorioallantoic membrane (CAM) vasculogenesis model. First, fertilized chick eggs were incubated horizontally at 37.5°C in a humidified incubator and windowed on day 8. Another set of E8 chicken embryonic skins were cultured in insert dishes with different concentrations of ZOL (1.0 or 10 uM) or without drug treatment for 24 hours. The embryonic skins were transferred to CAM. Endothelial cells of CAM normally started to proliferate and migrate into feather buds after two days. Blood vessel formation was determined after four days of culturing under the microscope. We found that endothelial cell proliferation and migration of CAM was completely inhibited and development of embryonic skin buds was blocked by ZOL at 10 uM. At a lower concentration of ZOL (1.0 uM), the vasculogenesis was also decreased and embryonic skin buds were also reduced in size (but to a lesser extent than at the higher drug concentration) compared with a control group without ZOL. We also examined whether zoledronic acid affected development of embryonic feather buds (epithelial cell) directly. The results showed that embryonic feather bud growth was unaffected when buds were cultured on insert dishes with 10uM ZOL compared to buds without this drug. This suggests that ZOL blocks endothelial cell proliferation in CAM and migration but does not effect epithelial cell development. We further examined endothelial cell gene expression of the bud cells on CAM treated with and without zoledronic acid. We measured vascular endothelial growth factor receptor-2 (Flk-1) expression with Western blot analysis. The results showed that Flk-1 is markedly reduced after buds were treated with ZOL at 10 uM and there was also some reduction in the expression of Flk-1 at the lower concentration (1.0 um) of ZOL. To determine which signal transduction pathway(s) may be involved in blocking endothelial cell proliferation and migration by ZOL, we determined gene expression of β-catenin, Runx2, and smad7 by RT-PCR in the embryonic buds. Runx2 is a target of β-catenin /TCF1 for the stimulation of bone formation, and Smad7 gene expression is increased in human hematopoietic stem cells (HSCs) and is required for TGF-β-induced expression of β-catenin. The results showed that expression of β-catenin was down-regulated by ZOL whereas expression of Runx2 and smad7 was up-regulated by this bisphosphonate. These results suggest that ZOL blocks the β-catenin pathway, and also add to other studies suggesting the important role of this pathway in blood vessel development. We have also shown that zoledronic acid profoundly suppresses vasculogenesis, and this effect adds another potential mechanism by which this bisphosphonate may possess anti-tumor effects.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-11-16
    Description: Pleiotrophin (PTN, Ptn) is an 18 kD cytokine that is expressed in many human breast cancers and its gene is inappropriately expressed in cell lines derived from these breast cancers. To study the siginificance of inappropriate expression of Ptn in human breast cancer cells on surrounding stromal cells, we first compared nude mouse xenografts of MCF-7 and MCF-7-Ptn cells. MCF-7-Ptn cells lack the Receptor Protein Tyrosine Phosphatase (RPTP)b/z, the PTN receptor, and thus are not responsive to PTN through autocrine or paracrine stimulation. The MCF-7-Ptn cell xenografts grew rapidly whereas MCF-7 cells xenografts were barely detectable 6 weeks after injection. MCF-7-Ptn cells that were co-injected with equal numbers of NIH3T3 cells grew even more rapidly in the flanks of the nude mice. Surprisingly, the MCF-7-Ptn cell explants developed a morphological phenotype remarkably similar to that of the human invasive ductal carcinoma. We then co-cultured MCF-7 cells that express Ptn (MCF-7-Ptn cells) with NIH 3T3 cells. Secretion of PTN from MCF-7-Ptn cells induced formation of sharply defined clusters of MCF-7-Ptn cells, termed “epithelial islands”, that were surrounded by dense fibrous bands interspersed with NIH 3T3 cells that morphologically closely resemble carcinoma associated fibroblasts (CAFs). A striking increase in tropoelastin and expression of type IV procollagen mRNA was identified in NIH3T3 cells co-cultured with MCF-7-Ptn cells. Furthermore, different markers often resulting from stromal cell-carcinoma cell interactions in breast cancer, including protein kinase C (PKC)-d, and both human and murine matrix metalloproteinase (MMP) 9 were identified either in cells or in the culture media taken from MCF-7-Ptn/NIH3T3 cell co-cultures. The induction of these biochemical and morphological features in the co-cultures of MCF-7-Ptn and NIH3T3 cells was demonstrated to be Ptn expression dependent, PTN-secretion dependent, and NIH3T3 cell dependent. The data suggest that PTN secretion alone from human breast cancer cells with inappropriate expression of Ptn is sufficient to markedly remodel the microenvironment of the breast cancer cell and induce a morphological transition of the MCF-7-Ptn cells and NIH3T3 cells to patterns resembling breast carcinomas through activation of the PTN/RPTPb/z signaling pathway in NIH3T3 cells and reciprocal signaling between the carcinoma stromal cells and the PTN secreting breast cancer cells.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1987-11-01
    Print ISSN: 0743-4634
    Electronic ISSN: 1530-8995
    Topics: Biology , Medicine
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-11-16
    Description: Angiogenesis is a hallmark of a variety of malignancies including multiple myeloma (MM). We have shown that MM patients express pleiotrophin (PTN), and this protein stimulates MM growth and prevents apoptosis. We have also demonstrated that PTN when combined with mCSF stimulates angiogenesis through the transdifferentiation (TD) of monocytes into endothelial cells. Our pathway-specific microarray results have shown that the Wnt pathway was up-regulated when monocytes were induced by mCSF and PTN. This signaling pathway plays an important role in cell growth, differentiation, function, and death. To further explore the role of Wnt/β-catenin signaling in the TD of monocytes into endothelial cells by PTN and mCSF, we examined whether monocytes induced to TD with this combination involved induction of the Wnt/β-catenin signal transduction pathway using immunohistochemical (IHC) staining and RT-PCR. Normal human blood monocytes were purified using density centrifugation followed by anti-CD14+ micro-bead affinity column selection. After one week of culture in the presence of mCSF and PTN, 5-10% of purified monocytes showed TD into endothelial cells as quantified by RT-PCR whereas cells treated with mCSF or PTN alone or without these factors did not. The cells also formed tube-like structures with positive staining for the endothelial cell markers Tie2, FLK-1, and vWF. The results showed β-catenin gene expression was markedly increased when CD14+ cells were treated with mCSF and PTN as demonstrated by RT-PCR. IHC studies showed CD14+ cells induced with mCSF and PTN expressed increased amounts of β-catenin in nuclear extracts but not cells treated with mCSF or PTN alone or without treatment. The nuclear gene or protein expression of β-catenin was blocked by adding casein kinase (CK)-1 inhibitor, a Wnt pathway inhibitor. We further examined whether CK-1 inhibitor can prevent TD of monocytes into endothelial cells by mCSF and PTN. CD14+ cells were exposed to mCSF and PTN or co-cultured with cells from fresh MM bone marrow or MM cell lines (U266 or MM1s). The Wnt inhibitor markedly decreased the formation of tube-like structures and endothelial cell gene expression. We also examined Smad7 gene expression. Smad7 is highly expressed in human hematopoietic stem cells (HSCs) and required for TGF-β-induced β-catenin expression. Our RT-PCR results showed that Smad7 gene expression in CD14+ cells induced with mCSF and PTN was not changed compared with untreated cells. These results suggest that the signaling pathways involved in TD of monocytes into endothelial cells are different from pathways involved in stem cell differentiation. We also examined Runx2 gene expression and this protein is a target of β-catenin /TCF1 involved in the stimulation of bone formation. Runx2 gene expression was up-regulated when monocytes were stimulated with mCSF and PTN. Runx2 gene expression was markedly increased by adding CK-1 inhibitor. Our findings further our understanding of the mechanisms involved in the TD of monocytes in endothelial cells and suggest the importance of the Wnt/β-catenin pathway in this critical early step in tumoral angiogenesis.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 1990-01-01
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2006-11-16
    Description: Anaplastic Lymphoma Kinase (ALK) is a receptor-type transmembrane tyrosine kinase (RTK) of the insulin receptor superfamily that structurally is most closely related to leukocyte tyrosine kinase. It was first discovered as a chimeric protein (NPM-ALK) of nucleophosmin and the C-terminal (kinase) domain of ALK in anaplastic large cell lymphomas (ALCL). NPM-ALK is constitutively active and generates the oncogenic signals that are the pathogenic mechanisms of these highly malignant cancers. The full-length ALK also is believed to have an important role in the pathogenesis of other human malignancies, since its expression is found in rhabdomyosarcomas, neuroblastomas, neuroectodermal tumors, glioblastomas, breast carcinomas, and melanomas. Recently it was proposed that pleiotrophin (PTN the protein, Ptn the gene) is the ligand that stimulates ALK to transduce signals to activate downstream targets. However, this proposal contrasted with earlier studies that demonstrated Receptor Protein Tyrosine Phosphatase (RPTP)β/ζ is the functional receptor for PTN. PTN was shown to inactivate RPTPβ/ζ and thereby permit the activity of different tyrosine kinases to increase tyrosine phosphorylation of the substrates of RPTPβ/ζ at the sites that are dephosphorylated by RPTPβ/ζ in cells not stimulated by PTN. Subsequent studies identified β-catenin, β-adducin, Fyn, GIT1/Cat-1, P190RhoGAP, and histone deacetylase 2 (HDAC-2) as downstream targets of the PTN/RPTPβ/ζ signaling pathway and demonstrated that their levels of tyrosine phosphorylation increase in PTN-stimulated cells. This diversity of PTN-regulated targets is one basis for the pleiotrophic activities of PTN. We now demonstrate that tyrosine phosphorylation of ALK is increased in PTN-stimulated cells through the PTN/RPTPβ/ζ signaling pathway. It is furthermore shown that ALK is activated in PTN-stimulated cells when it is expressed in cells without its extracellular domain, that β-catenin is a substrate of ALK, that the tyrosine phosphorylation site in β-catenin phosphorylated by ALK is the same site dephosphorylated by RPTPβ/ζ, and that PTN-stimulated tyrosine phosphorylation of β-catenin requires expression of ALK. The data suggest a unique mechanism to activate ALK; the data support a mechanism in which β-catenin is phosphorylated in tyrosine through the coordinated inactivation of RPTPβ/ζ, the activation of the tyrosine kinase activity of ALK, and the phosphorylation of β-catenin by ALK at the same site regulated by RPTPβ/ζ in PTN-stimulated cells. Since PTN often is inappropriately expressed in the same malignancies that express ALK, the data suggest a mechanism through which ALK signaling may contribute to those malignancies that express full length ALK through the activity of PTN to signal constitutively the same pathways as NPM-ALK in ALCL.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...