ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2016-06-27
    Description: Lightning can have a significant impact on ground-crew and other operations at airports, resulting in a cascade of delays beyond the immediate locations. Measures of these impacts have not been presented previously in a comprehensive approach for a variety of factors. Prior approaches typically used lightning data within outer observation radii of varying sizes to anticipate cloud-to-ground (CG) flashes in a smaller inner warning area such as an airport. The goal of this paper is to address issues related to the balance between safety and the efficiency of lightning warnings for such situations. The first of two topics addressed in this study is to examine the value of adding cloud pulses to CG strokes. The detection efficiency of the U.S. NLDN for cloud pulses increased to about 50% by late summer 2013, so NLDN data during the entire 2014 summer are considered at 10 locations. Verification is performed for the occurrence of NLDN-detected CG strokes at the airports. Cloud pulses were found to improve the 2-min probability of detection by 13% compared with CG strokes only. The second topic of the study is the reduction of the inner warning area from the size of an entire airport to a small section of the airport, from a radius of 4.8 to 0.5 km. The probability of detection with a 2-min lead time increases to over 0.90 for the smaller area, while the false alarm ratio also increases substantially when CGs plus cloud pulses are included.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-12-01
    Description: The first flash produced by a storm usually does not strike ground, but little has been published concerning the time after the first flash before a cloud-to-ground flash occurs, particularly for a variety of climatological regions. To begin addressing this issue, this study analyzed data from very-high-frequency (VHF) lightning mapping systems, which detect flashes of all types, and from the U.S. National Lightning Detection Network (NLDN), which identifies flash type and detects roughly 90% of cloud-to-ground flashes overall. VHF mapping data were analyzed from three regions: north Texas, Oklahoma, and the high plains of Colorado, Kansas, and Nebraska. The percentage of storms in which a cloud-to-ground flash was detected in the first minute of lightning activity varied from 0% in the high plains to 10%–20% in Oklahoma and north Texas. The distribution of delays to the first cloud-to-ground flash varied similarly. In Oklahoma and north Texas, 50% of storms produced a cloud-to-ground flash within 5–10 min, and roughly 10% failed to produce a cloud-to-ground flash within 1 h. In the high plains, however, it required 30 min for 50% of storms to have produced a cloud-to-ground flash, and 20% produced no ground flash within 1 h. The authors suggest that the reason high plains storms take longer to produce cloud-to-ground lightning is because the formation of the lower charge needed to produce most cloud-to-ground flashes is inhibited either by delaying the formation of precipitation in the mid- and lower levels of storms or by many of the storms having an inverted-polarity electrical structure.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-02-01
    Description: Between 2100 UTC 11 February 2003 and 0200 UTC 12 February 2003, a line of thunderstorms passed swiftly through parts of eastern Iowa and into north-central Illinois. Although this storm somewhat resembled a warm season, line-type mesoscale convective system, it was unique in that the thunderstorm winds exceeded the severe criterion (50 kt; 25.7 m s−1) during a snowburst. While the parent snowband deposited only 4 cm of snow, it did so in a short period and created a treacherous driving situation because of the ensuing near-whiteout conditions caused by strong winds that reached the National Weather Service severe criteria, as the line moved across central Illinois. Such storms in the cold season rarely occur and are largely undocumented; the present work seeks to fill this void in the existing literature.While this system superficially resembled a more traditional warm season squall line, deeper inspection revealed a precipitation band that failed to conform to that paradigm. Radar analysis failed to resolve any of the necessary warm season signatures, as maximum reflectivities of only 40–45 dBZ reached no higher than 3.7 km above ground level. The result was low-topped convection in a highly sheared environment. Moreover, winds in excess of 50 kt (25.7 m s−1) occurred earlier in the day without thunderstorm activity, upstream of the eventual severe thundersnow location. Perhaps of greatest importance is the fact that the winds in excess of the severe criterion were more the result of boundary layer mixing, and largely coincident with the parent convective line. This event was a case of forced convection, dynamically linked to its parent cold front via persistent frontogenesis and the convective instability associated with it; winds sufficient for a severe thunderstorm warning, while influenced by convection, resulted from high momentum mixing downward through a dry-adiabatic layer.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...