ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0378-1119
    Keywords: Colorado potato beetle ; insecticide ; lepidopteran ; recombinant DNA ; δ-endotoxin
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-25
    Description: Further progress in understanding and mitigating N2O emissions from soil lies within transdisciplinary research that reaches across spatial scales and takes an ambitious look into the future.
    Electronic ISSN: 2199-3998
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-12-10
    Description: Further progress in understanding and mitigating N2O emissions from soil lies within transdisciplinary research that reaches across spatial scales and takes an ambitious look into the future.
    Print ISSN: 2199-3971
    Electronic ISSN: 2199-398X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-07-12
    Print ISSN: 1351-0754
    Electronic ISSN: 1365-2389
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-01-23
    Description: The analysis of the four main isotopic N2O species (14N14N16O, 14N15N16O, 15N14N16O, 14N14N18O) and especially the intramolecular distribution of 15N (site preference, SP) has been suggested as a tool to distinguish source processes and to help constrain the global N2O budget. However, current studies suffer from limited spatial and temporal resolution capabilities due to the combination of discrete flask sampling with subsequent laboratory-based mass spectrometric analysis. Quantum cascade laser absorption spectroscopy (QCLAS) allows selective high-precision analysis of N2O isotopic species at trace levels and is suitable for in situ measurements. Here, we present results from the first field campaign, conducted on an intensively managed grassland in central Switzerland. N2O mole fractions and isotopic composition were determined in the atmospheric surface layer (2 m height) at high temporal resolution with a modified state-of-the-art laser spectrometer connected to an automated N2O preconcentration unit. The analytical performance was determined from repeated measurements of a compressed air tank and resulted in measurement repeatability of 0.20, 0.12 and 0.11‰ for δ15Nα, δ15Nβ and δ18O, respectively. Simultaneous eddy-covariance N2O flux measurements were used to determine the flux-averaged isotopic signature of soil-emitted N2O. Our measurements indicate that in general, nitrifier-denitrification and denitrification were the prevalent sources of N2O during the campaign, and that variations in isotopic composition were rather due to alterations in the extent to which N2O was reduced to N2, than other pathways such as hydroxylamine oxidation. Management and rewetting events were characterized by low values of the intra-molecular 15N site preference (SP), δ15Nbulk and δ18O, suggesting nitrifier denitrification and incomplete heterotrophic bacterial denitrification responded most strongly to the induced disturbances. Flux-averaged isotopic composition of N2O from intensively managed grassland was 6.9 ± 4.3, -17.4 ± 6.2 and 27.4 ± 3.6‰ for SP, δ15Nbulk and δ18O, respectively. The approach presented here is capable of providing long-term datasets also for other N2O emitting ecosystems, which can be used to further constrain global N2O inventories.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-04-29
    Description: The analysis of the four main isotopic N2O species (14N14N16O, 14N15N16O, 15N14N16O, 14N14N18O) and especially the intramolecular distribution of 15N ("site preference", SP) has been suggested as a tool to distinguish source processes and to help constrain the global N2O budget. However, current studies suffer from limited spatial and temporal resolution capabilities due to the combination of discrete flask sampling with subsequent laboratory-based mass-spectrometric analysis. Quantum cascade laser absorption spectroscopy (QCLAS) allows the selective high-precision analysis of N2O isotopic species at trace levels and is suitable for in situ measurements. Here, we present results from the first field campaign, conducted on an intensively managed grassland site in central Switzerland. N2O mole fractions and isotopic composition were determined in the atmospheric surface layer (at 2.2 m height) at a high temporal resolution with a modified state-of-the-art laser spectrometer connected to an automated N2O preconcentration unit. The analytical performance was determined from repeated measurements of a compressed air tank and resulted in measurement repeatability of 0.20, 0.12 and 0.11‰ for δ15Nα, δ15Nβ and δ18O, respectively. Simultaneous eddy-covariance N2O flux measurements were used to determine the flux-averaged isotopic signature of soil-emitted N2O. Our measurements indicate that, in general, nitrifier-denitrification and denitrification were the prevalent sources of N2O during the campaign and that variations in isotopic composition were due to alterations in the extent to which N2O was reduced to N2 rather than to other pathways, such as hydroxylamine oxidation. Management and rewetting events were characterized by low values of the intramolecular 15N site preference (SP), δ15Nbulk and δ18O, suggesting that nitrifier-denitrification and incomplete heterotrophic bacterial denitrification responded most strongly to the induced disturbances. The flux-averaged isotopic composition of N2O from intensively managed grassland was 6.9 ± 4.3, −17.4 ± 6.2 and 27.4 ± 3.6‰ for SP, δ15Nbulk and δ18O, respectively. The approach presented here is capable of providing long-term data sets also for other N2O-emitting ecosystems, which can be used to further constrain global N2O inventories.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  Persoonia - Molecular Phylogeny and Evolution of Fungi (0031-05850) vol.34 (2015) nr.1 p.10
    Publication Date: 2015-07-02
    Description: The circumscription of the genus Acremonium (Hypocreales) was recently reviewed on the basis of a DNA phylogenetic study. Several species were subsequently transferred to Sarocladium, but the relationships between both genera remained unresolved. Based on multilocus phylogenetic inferences combined with phenotypic data, we have revised the species concepts within Sarocladium and some genetically related species of Acremonium. As a result of these studies, six species are described as new, viz. S. bifurcatum, S. gamsii, S. hominis, S. pseudostrictum, S. subulatum and S. summerbellii. In addition, the new combinations S. implicatum and S. terricola are proposed for A. implicatum and A. terricola, respectively. Sarocladium attenuatum is confirmed as synonym of the type species of the genus, S. oryzae. An epitype and neotype are also introduced for S. oryzae and S. implicatum, respectively. Although Sarocladium species have traditionally been considered as important phytopathogens, the genus also contains opportunistic human pathogens. This study extends the spectrum of clinical species that could be diagnosed as causal agents of human infections.
    Keywords: Acremonium ; Hypocreales ; phylogeny ; Sarocladium ; taxonomy
    Repository Name: National Museum of Natural History, Netherlands
    Type: Article / Letter to the editor
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-06-26
    Description: Novel species of fungi described in this study include those from various countries as follows: Australia: Banksiophoma australiensis (incl. Banksiophoma gen. nov.) on Banksia coccinea, Davidiellomyces australiensis (incl. Davidiellomyces gen. nov.) on Cyperaceae, Didymocyrtis banksiae on Banksia sessilis var. cygnorum, Disculoides calophyllae on Corymbia calophylla, Harknessia banksiae on Banksia sessilis, Harknessia banksiae-repens on Banksia repens, Harknessia banksiigena on Banksia sessilis var. cygnorum, Harknessia communis on Podocarpus sp., Harknessia platyphyllae on Eucalyptus platyphylla, Myrtacremonium eucalypti (incl. Myrtacremonium gen. nov.) on Eucalyptus globulus, Myrtapenidiella balenae on Eucalyptus sp., Myrtapenidiella eucalyptigena on Eucalyptus sp., Myrtapenidiella pleurocarpae on Eucalyptus pleurocarpa, Paraconiothyrium hakeae on Hakea sp., Paraphaeosphaeria xanthorrhoeae on Xanthorrhoea sp., Parateratosphaeria stirlingiae on Stirlingia sp., Perthomyces podocarpi (incl. Perthomyces gen. nov.) on Podocarpus sp., Readeriella ellipsoidea on Eucalyptus sp., Rosellinia australiensis on Banksia grandis, Tiarosporella corymbiae on Corymbia calophylla, Verrucoconiothyrium eucalyptigenum on Eucalyptus sp., Zasmidium commune on Xanthorrhoea sp., and Zasmidium podocarpi on Podocarpus sp. Brazil: Cyathus aurantogriseocarpus on decaying wood, Perenniporia brasiliensis on decayed wood, Perenniporia paraguyanensis on decayed wood, and Pseudocercospora leandrae-fragilis on Leandra fragilis. Chile: Phialocephala cladophialophoroides on human toe nail. Costa Rica: Psathyrella striatoannulata from soil. Czech Republic: Myotisia cremea (incl. Myotisia gen. nov.) on bat droppings. Ecuador: Humidicutis dictiocephala from soil, Hygrocybe macrosiparia from soil, Hygrocybe sangayensis from soil, and Polycephalomyces onorei on stem of Etlingera sp. France: Westerdykella centenaria from soil. Hungary: Tuber magentipunctatum from soil. India: Ganoderma mizoramense on decaying wood, Hodophilus indicus from soil, Keratinophyton turgidum in soil, and Russula arunii on Pterigota alata. Italy: Rhodocybe matesina from soil. Malaysia: Apoharknessia eucalyptorum, Harknessia malayensis, Harknessia pellitae, and Peyronellaea eucalypti on Eucalyptus pellita, Lectera capsici on Capsicum annuum, and Wallrothiella gmelinae on Gmelina arborea. Morocco: Neocordana musigena on Musa sp. New Zealand: Candida rongomai-pounamu on agaric mushroom surface, Candida vespimorsuum on cup fungus surface, Cylindrocladiella vitis on Vitis vinifera, Foliocryphia eucalyptorum on Eucalyptus sp., Ramularia vacciniicola on Vaccinium sp., and Rhodotorula ngohengohe on bird feather surface. Poland: Tolypocladium fumosum on a caterpillar case of unidentified Lepidoptera. Russia: Pholiotina longistipitata among moss. Spain: Coprinopsis pseudomarcescibilis from soil, Eremiomyces innocentii from soil, Gyroporus pseudocyanescens in humus, Inocybe parvicystis in humus, and Penicillium parvofructum from soil. Unknown origin: Paraphoma rhaphiolepidis on Rhaphiolepsis indica. USA: Acidiella americana from wall of a cooling tower, Neodactylaria obpyriformis (incl. Neodactylaria gen. nov.) from human bronchoalveolar lavage, and Saksenaea loutrophoriformis from human eye. Vietnam: Phytophthora mekongensis from Citrus grandis, and Phytophthora prodigiosa from Citrus grandis. Morphological and culture characteristics along with DNA barcodes are provided.
    Keywords: ITS nrDNA barcodes ; LSU ; novel fungal species ; systematics
    Repository Name: National Museum of Natural History, Netherlands
    Type: Article / Letter to the editor
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-04-22
    Description: The Global Consortium for the Classification of Fungi and fungus-like taxa is an international initiative of more than 550 mycologists to develop an electronic structure for the classification of these organisms. The members of the Consortium originate from 55 countries/regions worldwide, from a wide range of disciplines, and include senior, mid-career and early-career mycologists and plant pathologists. The Consortium will publish a biannual update of the Outline of Fungi and funguslike taxa, to act as an international scheme for other scientists. Notes on all newly published taxa at or above the level of species will be prepared and published online on the Outline of Fungi website (https://www.outlineoffungi.org/), and these will be finally published in the biannual edition of the Outline of Fungi and fungus-like taxa. Comments on recent important taxonomic opinions on controversial topics will be included in the biannual outline. For example, ‘to promote a more stable taxonomy in Fusarium given the divergences over its generic delimitation’, or ‘are there too many genera in the Boletales?’ and even more importantly, ‘what should be done with the tremendously diverse ‘dark fungal taxa?’ There are undeniable differences in mycologists’ perceptions and opinions regarding species classification as well as the establishment of new species. Given the pluralistic nature of fungal taxonomy and its implications for species concepts and the nature of species, this consortium aims to provide a platform to better refine and stabilise fungal classification, taking into consideration views from different parties. In the future, a confidential voting system will be set up to gauge the opinions of all mycologists in the Consortium on important topics. The results of such surveys will be presented to the International Commission on the Taxonomy of Fungi (ICTF) and the Nomenclature Committee for Fungi (NCF) with opinions and percentages of votes for and against. Criticisms based on scientific evidence with regards to nomenclature, classifications, and taxonomic concepts will be welcomed, and any recommendations on specific taxonomic issues will also be encouraged; however, we will encourage professionally and ethically responsible criticisms of others’ work. This biannual ongoing project will provide an outlet for advances in various topics of fungal classification, nomenclature, and taxonomic concepts and lead to a community-agreed classification scheme for the fungi and fungus-like taxa. Interested parties should contact the lead author if they would like to be involved in future outlines.
    Keywords: Plant Science ; Ecology ; Evolution ; Behavior and Systematics
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...