ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-07-28
    Description: Planning and decision-making can be improved by access to reliable forecasts of ecosystem state, ecosystem services, and natural capital. Availability of new data sets, together with progress in computation and statistics, will increase our ability to forecast ecosystem change. An agenda that would lead toward a capacity to produce, evaluate, and communicate forecasts of critical ecosystem services requires a process that engages scientists and decision-makers. Interdisciplinary linkages are necessary because of the climate and societal controls on ecosystems, the feedbacks involving social change, and the decision-making relevance of forecasts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clark, J S -- Carpenter, S R -- Barber, M -- Collins, S -- Dobson, A -- Foley, J A -- Lodge, D M -- Pascual, M -- Pielke, R Jr -- Pizer, W -- Pringle, C -- Reid, W V -- Rose, K A -- Sala, O -- Schlesinger, W H -- Wall, D H -- Wear, D -- New York, N.Y. -- Science. 2001 Jul 27;293(5530):657-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Duke University, Durham, NC 27708 USA. jimclark@duke.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11474103" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture ; Animals ; Decision Making ; Disease Outbreaks ; Ecology ; *Ecosystem ; Epidemiology ; *Forecasting ; Humans ; Policy Making ; Population Growth ; Stochastic Processes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-03-10
    Description: Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected changes, and the major sources of uncertainties. For terrestrial ecosystems, land-use change probably will have the largest effect, followed by climate change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration. For freshwater ecosystems, biotic exchange is much more important. Mediterranean climate and grassland ecosystems likely will experience the greatest proportional change in biodiversity because of the substantial influence of all drivers of biodiversity change. Northern temperate ecosystems are estimated to experience the least biodiversity change because major land-use change has already occurred. Plausible changes in biodiversity in other biomes depend on interactions among the causes of biodiversity change. These interactions represent one of the largest uncertainties in projections of future biodiversity change.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sala, O E -- Chapin, F S 3rd -- Armesto, J J -- Berlow, E -- Bloomfield, J -- Dirzo, R -- Huber-Sanwald, E -- Huenneke, L F -- Jackson, R B -- Kinzig, A -- Leemans, R -- Lodge, D M -- Mooney, H A -- Oesterheld, M -- Poff, N L -- Sykes, M T -- Walker, B H -- Walker, M -- Wall, D H -- New York, N.Y. -- Science. 2000 Mar 10;287(5459):1770-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Instituto de Investigaciones Fisiologicas y Ecologicas vinculadas a la Agricultura, Faculty of Agronomy, University of Buenos Aires, Avenida San Martin 4453, Buenos Aires 1417, Argentina. sala@ifeva.edu.ar〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10710299" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture ; Animals ; Atmosphere ; Carbon Dioxide ; Climate ; *Ecosystem ; Fresh Water ; Models, Biological ; Nitrogen
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-08-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lodge, David M -- England -- Nature. 2015 Jul 30;523(7562):503. doi: 10.1038/523503a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26223590" target="_blank"〉PubMed〈/a〉
    Keywords: *Catholicism ; *Environmental Policy/economics ; Global Warming/economics/prevention & control/statistics & numerical data ; Humans ; *Policy Making ; Politics ; *Religion and Science ; Reproduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2002-11-09
    Description: Methods of risk assessment for alien species, especially for nonagricultural systems, are largely qualitative. Using a generalizable risk assessment approach and statistical models of fish introductions into the Great Lakes, North America, we developed a quantitative approach to target prevention efforts on species most likely to cause damage. Models correctly categorized established, quickly spreading, and nuisance fishes with 87 to 94% accuracy. We then identified fishes that pose a high risk to the Great Lakes if introduced from unintentional (ballast water) or intentional pathways (sport, pet, bait, and aquaculture industries).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kolar, Cynthia S -- Lodge, David M -- New York, N.Y. -- Science. 2002 Nov 8;298(5596):1233-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA. ckolar@usgs.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12424378" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Analysis of Variance ; Animals ; Conservation of Natural Resources ; Discriminant Analysis ; *Ecology ; *Ecosystem ; *Environment ; *Fishes/growth & development/physiology ; Forecasting ; Models, Biological ; *Models, Statistical ; Multivariate Analysis ; Regression Analysis ; Risk Assessment ; Seawater ; Sodium Chloride ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Ltd.
    Freshwater biology 47 (2002), S. 0 
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 1. In some shallow lakes, Daphnia and other important pelagic consumers of phytoplankton undergo diel horizontal migration (DHM) into macrophytes or other structures in the littoral zone. Some authors have suggested that DHM reduces predation by fishes on Daphnia and other cladocerans, resulting in a lower phytoplankton biomass in shallow lakes than would occur without DHM. The costs and benefits of DHM, and its potential implications in biomanipulation, are relatively unknown, however.2. In this review, we compare studies on diel vertical migration (DVM) to assess factors potentially influencing DHM (e.g. predators, food, light, temperature, dissolved oxygen, pH). We first provide examples of DHM and examine avoidance by Daphnia of both planktivorous (PL) fishes and predacious invertebrates.3. We argue that DHM should be favoured when the abundance of macrophytes is high (which reduces planktivory) and the abundance of piscivores in the littoral is sufficient to reduce planktivores. Food in the littoral zone may favour DHM by daphnids, but the quality of these resources relative to pelagic phytoplankton is largely unknown.4. We suggest that abiotic conditions, such as light, temperature, dissolved oxygen and pH, are less likely to influence DHM than DVM because weaker gradients of these conditions occur horizontally in shallow lakes relative to vertical gradients in deep lakes.5. Because our understanding of DHM is rudimentary, we highlight potentially important research areas: studying a variety of systems, comparing temporal and spatial scales of DHM in relation to DVM, quantifying positive and negative influences of macrophytes, focusing on the role of invertebrate predation, testing the performance of cladocerans on littoral versus pelagic foods (quantity and quality), investigating the potential influence of temperature, and constructing comprehensive models that can predict the likelihood of DHM. Our ability to biomanipulate shallow lakes to create or maintain the desired clear water state will increase as we learn more about the factors initiating and influencing DHM.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 82 (1990), S. 33-39 
    ISSN: 1432-1939
    Keywords: Snail distribution ; Crayfish predation ; Periphyton ; Substrate preference ; Lymnaea emarginata
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In the laboratory and field, we examined how periphyton (food of snails) and predatory crayfish influenced snail distribution in Trout Lake, a permanent, northern Wisconsin lake. Laboratory experiments (with no crayfish) tested the importance of periphyton biomass in determining snail preference among rocks, and among rock, sand, and macrophyte substrates. Among rocks with four different amounts of periphyton, periphyton biomass and the number of Lymnaea emarginata, Physa spp., and Amnicola spp. were positively related. A similar, but non-significant, trend occurred for Helisoma anceps. A field experiment at a site in Trout Lake where predation risk was low confirmed the preference by snails for periphyton covered rocks; more snails colonized rocks with periphyton than rocks without. When given a choice of rock, sand, and macrophytes in the laboratory, L. emarginata preferred high periphyton biomass and rock. Laboratory and field results contrasted with the distribution of snails in Trout Lake; no snails occurred in areas with abundant periphyton-covered rocks, but snails were abundant nearby on scattered rocks with little periphyton. However, where snails were absent, crayfish were abundant (14.5 crayfish-trap−1-day−1), and where snails were abundant, crayfish were rare (3.2 crayfish-trap−1-day−1), suggesting that crayfish predation reduced snails. The hypothesis that the negative association between snail and periphyton biomass resulted from snail grazing was supported by the results of a field snail enclosure-exclosure experiment (1 m2 cages; n=3). All experiments and observations therefore suggest that: 1) crayfish predation is more important than a preference for high periphyton biomass in determining snail distribution in Trout Lake; 2) periphyton biomass is negtively related to snail grazing; and 3) crayfish had a positive indirect effect on periphyton by preying on grazing snails.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 68 (1985), S. 111-117 
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The interaction of population stability and habitat permanence has a major influence on the microdistribution of freshwater snails. For two years (February 1980–January 1982), we monitored the abundance of macrophytes and the abundance and size structure of four species of macrophyte-associated freshwater snails in an English pond. Previous work (Lodge, in press) showed that two species, the pulmonate Lymnaea peregra (Mull.) and the prosobranch Valvata piscinalis (Mull.), were associated with cubmersed macrophytes, while two other species, the pulnonate Planorbis vortex (Linn.), and the prosobranch Bithynia tentaculata (Linn.), were associated with emergent macrophytes. A dramatic decline of submersed macrophytes provided a test of the hypotheses that the population stability of Lymnaea and Valvata was 1) high, and 2) an important cause of the association of those two species with submersed macrophytes. When the submersed macrophytes declined in August 1980, 〉99% of the Lymnaea and about 35% of the Valvata population died. The populations of Planorbis and Bithynia were not reduced. In 1980, Lymnaea and Valvata had simple annual life cycles, but with the regrowth of submersed macrophytes in spring 1981, the Lymnaea and Valvata populations responded with early, high, and repeated reproduction with some overlap of generations. In both years, Planorbis had an annual semelparous life cycle, while Bithynia lived up to 3 years and bred iteroparously. Following the terminology of Connell and Sousa (1983), Lymnaea exhibited low resistance to habitat disturbance but high adjustment following the disturbance. Valvata showed higher resistance than Lymnaea, and also high adjustment. Although the population stability of Planorbis and Bithynia could not be rigorously evaluated, published accounts of those species' life cycles suggest that stability, specially the adjustment component, was low. We suggest that the population stability of the four species is a major determinant of the association of Lymnaea and Valvata with the impermanent macrophyte habitat and that of Planorbis and Bithynia with the permanent macrophyte habitat.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-04-18
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2006-12-26
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-05-04
    Description: Many ecosystems appear subject to regime shifts—abrupt changes from one state to another after crossing a threshold or tipping point. Thresholds and their associated stability landscapes are determined within a coupled socioeconomic–ecological system (SES) where human choices, including those of managers, are feedback responses. Prior work has made one of two assumptions about managers: that they face no institutional constraints, in which case the SES may be managed to be fairly robust to shocks and tipping points are of little importance, or that managers are rigidly constrained with no flexibility to adapt, in which case the inferred thresholds may poorly reflect actual managerial flexibility. We model a multidimensional SES to investigate how alternative institutions affect SES stability landscapes and alter tipping points. With institutionally dependent human feedbacks, the stability landscape depends on institutional arrangements. Strong institutions that account for feedback responses create the possibility for desirable states of the world and can cause undesirable states to cease to exist. Intermediate institutions interact with ecological relationships to determine the existence and nature of tipping points. Finally, weak institutions can eliminate tipping points so that only undesirable states of the world remain.
    Keywords: Sustainability Science
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...