ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing :
    Keywords: Natural disasters. ; Climatology. ; Bioclimatology. ; Geography. ; Earth sciences. ; Natural Hazards. ; Climate Sciences. ; Climate Change Ecology. ; Geography. ; Earth Sciences.
    Description / Table of Contents: Chapter 1. Characteristics of Risk (Jan Kleinn et al) -- Chapter 2. Climate Change Impacts to Hurricane-Induced Wind and Storm Surge Losses for Three Major Metropolitan Regions in the U.S. (Peter Sousounis et al.) -- Chapter 3. Development of an Open-source Hurricane Wind Risk Model for Bermuda (Pinelopi Loizou et al.) -- Chapter 4. Downwards Counterfactual Analysis in Insurance Tropical Cyclone Models: A Miami Case Study (Cameron Rye et al.) -- Chapter 5. Estimating Tropical Cyclone Vulnerability: A Review of Different Open-Source Approaches (Katy Wilson and Jane Baldwin) -- Chapter 6. Geohome: Affordable, Resilient Housing for Climate Hazard Mitigation (George Elvin) -- Chapter 7. Identifying Limitations when Deriving Probabilistic Views of North Atlantic Hurricane Hazard from Counterfactual Ensemble NWP Re-forecasts (Tom Philp) -- Chapter 8. Perspective on Hurricane Risk Management Strategies in the Built Environment (Kelly Hereid) -- Chapter 9. The Response of Hurricane Inland Penetration to the Nearshore Translation Speed (Yi-Jie Zhu and Jennifer Collins),.
    Abstract: How is a changing climate affecting hurricanes, and how are these changes intersecting with our changing exposure and vulnerability in ways that affect tropical cyclone risk? Crucially, how should this understanding be incorporated into risk management practice? This book takes a cross-sectoral look at how damaging tropical cyclone characteristics are changing and presents novel approaches to integrate science with risk assessment. In this new era of tropical cyclone impacts, understanding effective risk management practice in a changing climate is more important than ever. This book details the outcomes of new research focusing on climate risk related to hurricanes in a changing climate. Topics include characteristics of tropical cyclone risk, perspectives on hurricane risk management strategies in the built environment, and implications for commercial risk. Inspired by the Symposium on Hurricane Risk in a Changing Climate, this book brings together leading international academics and researchers, and provides a source reference for both risk managers and climate scientists for research on the interface between tropical cyclones, climate, and risk. 8 chapters are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
    Type of Medium: Online Resource
    Pages: XV, 347 p. 1 illus. , online resource.
    Edition: 1st ed. 2022.
    ISBN: 9783031085680
    Series Statement: Hurricane Risk, 2
    DDC: 551
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-01-08
    Print ISSN: 1948-8327
    Electronic ISSN: 1948-8335
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-08-20
    Description: Weather radar is now widely viewed by the general public in the United States via television, computers/tablets, and smartphones. Anyone can consult near-real-time maps and animations of weather radar data when weather conditions are a factor. However, the usefulness of weather radar data for each user depends on a complex interaction of factors. There have been few studies providing conceptual arguments and empirical data to better understand what the most important factors are and to comprehend patterns of public weather radar use across the United States. The first part of this research provides a basic conceptual framework for research investigating the usefulness of weather radar displays as a source of weather information and as a decision aid. The second part aims to uncover several factors that influence the perceived usefulness rating of the National Weather Service (NWS) website’s weather radar display at both national and regional levels using variables gathered from the 2014 NWS customer satisfaction survey alongside relevant geographic and climatological variables. Data analyses include spatial clustering and ordinal regression utilized within a generalized linear model methodology. Overall, respondents who are more familiar with the NWS and their products, as well as those who indicate they are more likely to take action based on information provided by the NWS, are more likely to find the NWS radar display useful. Geographically, the NWS radar display is most useful to persons residing in the southern United States. Lightning is the most important hazard associated with higher radar usefulness ratings.
    Print ISSN: 1948-8327
    Electronic ISSN: 1948-8335
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-09-21
    Description: The 2017 North Atlantic hurricane season was extremely active, with 17 named storms (1981–2010 median is 12.0), 10 hurricanes (median is 6.5), 6 major hurricanes (median is 2.0), and 245% of median accumulated cyclone energy (ACE) occurring. September 2017 generated more Atlantic named storm days, hurricane days, major hurricane days, and ACE than any other calendar month on record. The season was destructive, with Harvey and Irma devastating portions of the continental United States, while Irma and Maria brought catastrophic damage to Puerto Rico, Cuba, and many other Caribbean islands. Seasonal forecasts increased from calling for a slightly below-normal season in April to an above-normal season in August as large-scale environmental conditions became more favorable for an active hurricane season. During that time, the tropical Atlantic warmed anomalously while a potential El Niño decayed in the Pacific. Anomalously high SSTs prevailed across the tropical Atlantic, and vertical wind shear was anomalously weak, especially in the central tropical Atlantic, from late August to late September when several major hurricanes formed. Late-season hurricane activity was likely reduced by a convectively suppressed phase of the Madden–Julian oscillation. The large-scale steering flow was different from the average over the past decade with a strong subtropical high guiding hurricanes farther west across the Atlantic. The anomalously high tropical Atlantic SSTs and low vertical wind shear were comparable to other very active seasons since 1982.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-06-01
    Print ISSN: 1361-9209
    Electronic ISSN: 1879-2340
    Topics: Architecture, Civil Engineering, Surveying , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-06-28
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-03-18
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-05-21
    Description: The 2016 North Atlantic hurricane season had an early start with a rare and powerful storm for January impacting the Azores at hurricane force. Likewise, the end of season heralded Otto which was record breaking in location and intensity being a high-end Category 2 storm at landfall over southern central America in late November. We show that high precipitable water, positive relative vorticity, and low sea level pressure allowed for conducive conditions. During the season, few storms occurred in the main development region. While some environmental conditions were conducive for formation there (such as precipitable water, relative vorticity, and shear), the midlevel relative humidity was too low there for most of the season, presenting very dry conditions in that level of the atmosphere. We further find that the October peak in the accumulated cyclone energy was related to environmentally conducive conditions with positive relative humidity, precipitable water, relative humidity, and low values of sea level pressure. Overall 2016 was notable for a series of extremes, some rarely, and a few never before observed in the Atlantic basin, a potential harbinger of seasons to come in the face of ongoing global climate change. ©2017. American Geophysical Union. All Rights Reserved.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-11-15
    Description: The variation of air temperature at 2 m above the earth’s surface in South America (SA) between 1948 and 2007 is investigated primarily using the NCEP–NCAR reanalysis. In December–February (austral summer), the majority of SA has a mean temperature between 21° and 24°C during 1948–75, and for 1976–2007 the mean temperature is above 24°C. In June–August (austral winter), warmer temperatures are observed in the tropical region in the recent period. The results indicate that Northeast Brazil (NEB) and central Brazil are warmer in the more recent period. In the last seven years (2001–07) compared to the earlier periods, greater warming is noted in the tropical SA region, mainly in NEB and over the North Atlantic Ocean, and cooling is observed in part of the subtropical SA region. Supporting evidence for the warming in Brazil is given through analyses of station data and observational data. The results presented here indicate that the climate change over SA is likely not predominantly a result of variations in El Niño–Southern Oscillation (the most important coupled ocean–atmosphere phenomenon to produce climate variability over SA). Instead, the climate changes likely occur as a response to other natural variability of the climate and/or may be a result of human activity. However, even without ascertaining the specific causes, the most important finding in this work is to demonstrate that a change in the temperature patterns of SA occurred between 1948 and 2007.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-07-15
    Description: The variation of near-surface air temperature anomalies in Africa between 1979 and 2010 is investigated primarily using Microwave Sounding Unit (MSU) total lower-tropospheric temperature data from the Remote Sensing Systems (RSS) and the University of Alabama in Huntsville (UAH) datasets. Significant increasing temperature trends were found in each of the following regions examined: all of Africa, Northern Hemisphere Africa, Southern Hemisphere Africa, tropical Africa, and subtropical Africa. Considering the months June–August, regions in both North and South Africa saw significantly warmer temperatures in the most recent period 1995–2010 than in the period 1979–94. However, for the months December–February, the significant warming was concentrated in the north of Africa. When the two most recent decades are compared with the period 1979–90, warming is observed over these same regions and is concentrated in the most recent decade, from 2001 to 2010. The results presented here indicate that the climate change over Africa is likely not predominantly a result of variations in the El Niño–Southern Oscillation (a teleconnection that has been previously shown to affect climate in some parts of Africa). Instead the climate changes likely occur owing to other natural variability of the climate and/or may be a result of human activity. However, even without ascertaining the specific causes, the most important finding in this work is to demonstrate that a significant rise in African temperatures occurred between 1979 and 2010.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...