ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-08-28
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-19
    Description: Although the Southern Ocean is considered a High Nutrient Low Chlorophyll area (HNLC), massive and recurrent blooms are observed over and downstream the Kerguelen Plateau. This mosaic of blooms is triggered by a higher iron supply resulting from the interaction between the Antarctic Circumpolar Current and the local bathymetry. Net primary production, N-uptake (NO3− and NH4+), and nitrification rates were measured at 8 stations in austral spring 2011 (October–November) during the KEOPS2 cruise in the Kerguelen area. Iron fertilization stimulates primary production, with integrated net primary production and growth rates much higher in the fertilized areas (up to 315 mmol C m−2 d−1 and up to 0.31 d−1, respectively) compared to the HNLC reference site (12 mmol C m−2 d−1 and 0.06 d−1, respectively). Primary production is mainly sustained by nitrate uptake, with f ratio (corresponding to NO3− uptake/(NO3− uptake + NH4+ uptake)) lying in the upper end of the observations for the Southern Ocean (up to 0.9). Unexpectedly, we report unprecedented rates of nitrification (up to ~3 mmol C m−2 d−1, with ~90% of them
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-03-24
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-06-16
    Description: We report on the zonal variability of mesopelagic particulate organic carbon) remineralization and deep carbon transfer potential during the Kerguelen Ocean and Plateau compared Study 2 expedition (KEOPS 2; October–November 2011) in an area of the Polar Front supporting recurrent massive blooms from natural Fe fertilization. Mesopelagic carbon remineralization was assessed using the excess, non-lithogenic particulate barium (Baxs) inventories in mesopelagic waters and compared with surface primary and export productions. Results for this early season study are compared with results obtained earlier (2005; KEOPS 1) for the same area during summer. For the Kerguelen plateau (A3 site) we observe a similar functioning of the mesopelagic ecosystem during both seasons (spring and summer), with less that 30% of carbon exported from the upper 150 m being remineralized in the mesopelagic column (150–400 m). For deeper stations (〉 2000 m) located on the margin, inside a Polar Front meander, as well as in the vicinity of the Polar Front, east of Kerguelen, remineralization in the upper 400 m in general represents 〉 30% of carbon export, but when considering the upper 800 m, in some cases, the entire flux of exported carbon is remineralized. It appears that above the plateau (A3 site) mesopelagic remineralization is not a major barrier to the transfer of organic matter to the sea-floor (close to 500 m). There the efficiency of carbon sequestration into the bottom waters (〉 400 m) reached up to 87% of the carbon exported from the upper 150 m. In contrast, at the deeper locations mesopelagic remineralization clearly limits the sequestration of carbon to depths 〉 400 m. For sites at the margin of the plateau (station E-4W) and the Polar front (station F-L), mesopelagic remineralization even exceeds upper 150 m export, resulting in a null sequestration efficiency to depths 〉 800 m. In the Polar Front meander, where successive stations form a time series, the capacity of the meander to transfer carbon to depth 〉 800 m is highly variable (0 to 73 %). The highest carbon transfer efficiencies in the meander are furthermore coupled to intense and complete deep (〉 800 m) remineralization, resulting again in a close to zero deep (〉 2000 m) carbon sequestration efficiency there.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-05-05
    Description: A massive diatom-bloom is observed each year in the surface waters of the naturally Fe fertilized Kerguelen Plateau (Southern Ocean). We measured biogenic silica production and dissolution fluxes in the mixed layer in the vicinity of the Kerguelen Plateau during austral spring 2011 (KEOPS-2 cruise). We compare results from a High-Nutrient Low-Chlorophyll reference station and stations with different degrees of iron enrichment and bloom conditions. Above the Plateau biogenic silica production fluxes are among the highest reported so far in the Southern Ocean (up to 47.9 mmol m−2 d−1). Although significant (10.2 mmol m−2 d−1 in average), silica dissolution rates were generally much lower than production rates. Uptake ratios (Si:C and Si:N) confirm that diatoms strongly dominate the primary production in this area. At the bloom onset, decreasing dissolution to production ratios (D:P) indicate that the remineralization of silica could sustained most of the low silicon uptake and that the system progressively shifts toward a silica production regime which must be mainly supported by new source of silicic acid. Moreover, by comparing results from the two KEOPS-expeditions (spring 2011 and summer 2005), we suggest that there is a seasonal evolution on the processes decoupling Si and N cycles in the area. Indeed, the consumption of H4SiO4 standing stocks occurs only during the growing stage of the bloom when strong net silica production is observed, contributing to a higher H4SiO4 depletion relative to NO3−. Then, the decoupling between H4SiO4 and NO3− is mainly controlled by the more efficient nitrogen recycling relative to Si. Gross-Si:N uptake ratios were higher in the Fe-rich regions compared to the HNLC area, likely due to different diatoms communities. This suggests that the diatom responses to natural Fe fertilization are more complex than previously thought, and that natural iron fertilization over long time scales does not necessarily decrease Si:N uptake ratios as suggested by the Silicic Acid Leakage Hypothesis. Finally, we propose the first seasonal estimate of Si-biogeochemical budget above the Kerguelen Plateau based on direct measurements. This study points out that naturally iron fertilized areas of the Southern Ocean could sustain very high regimes of biogenic silica production, similar to those observed in highly productive upwelling systems.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-10-21
    Description: A massive diatom bloom is observed each year in the surface waters of the naturally Fe-fertilized Kerguelen Plateau (Southern Ocean). We measured biogenic silica production and dissolution fluxes (ρSi and ρDiss, respectively) in the mixed layer in the vicinity of the Kerguelen Plateau during austral spring 2011 (KEOPS-2 cruise). We compare results from a high-nutrient low-chlorophyll reference station and stations with different degrees of iron enrichment and bloom conditions. Above the plateau biogenic ρSi are among the highest reported so far in the Southern Ocean (up to 47.9 mmol m−2 d−1). Although significant (10.2 mmol m−2 d−1 on average), ρDiss were generally much lower than production rates. Uptake ratios (ρSi : ρC and ρSi : ρN) confirm that diatoms strongly dominate primary production in this area. At the bloom onset, decreasing dissolution-to-production ratios (D : P) indicate that the remineralization of silica could sustain most of the low silicon uptake and that the system progressively shifts toward a silica production regime which must be mainly supported by new source of silicic acid. Moreover, by comparing results from the two KEOPS expeditions (spring 2011 and summer 2005), we suggest that there is a seasonal evolution of the processes decoupling Si and N cycles in the area. Indeed, the consumption of H4SiO4 standing stocks occurs only during the growing stage of the bloom when strong net silica production is observed, contributing to higher H4SiO4 depletion relative to NO3−. Then, the decoupling of H4SiO4 and NO3− is mainly controlled by the more efficient nitrogen recycling relative to Si. Gross Si : N uptake ratios were higher in the Fe-rich regions compared to the high-nutrient low-chlorophyll (HNLC) area, likely due to different diatom communities. This suggests that the diatom responses to natural Fe fertilization are more complex than previously thought, and that natural iron fertilization over long timescales does not necessarily decrease Si : N uptake ratios as suggested by the silicic acid leakage hypothesis. Finally, we propose the first seasonal estimate of the Si biogeochemical budget above the Kerguelen Plateau based on direct measurements. This study points out that naturally iron-fertilized areas of the Southern Ocean could sustain very high regimes of biogenic silica production, similar to those observed in highly productive upwelling systems.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-11-13
    Description: Although the Southern Ocean is considered a high-nutrient, low-chlorophyll (HNLC) area, massive and recurrent blooms are observed over and downstream of the Kerguelen Plateau. This mosaic of blooms is triggered by a higher iron supply resulting from the interaction between the Antarctic Circumpolar Current and the local bathymetry. Net primary production, N uptake (NO3− and NH4+), and nitrification rates were measured at eight stations in austral spring 2011 (October–November) during the KEOPS 2 cruise in the Kerguelen Plateau area. Natural iron fertilization stimulated primary production, with mixed layer integrated net primary production and growth rates much higher in the fertilized areas (up to 315 mmol C m−2 d−1 and up to 0.31 d−1 respectively) compared to the HNLC reference site (12 mmol C m−2 d−1 and 0.06 d−1 respectively). Primary production was mainly sustained by nitrate uptake, with f ratios (corresponding to NO3−-uptake / (NO3−-uptake + NH4+-uptake)) lying at the upper end of the observations for the Southern Ocean (up to 0.9). We report high rates of nitrification (up to ~ 3 μmol N L−1 d−1, with ~ 90 % of them 〈 1 μmol N L−1 d−1) typically occurring below the euphotic zone, as classically observed in the global ocean. The specificity of the studied area is that at most of the stations, the euphotic layer was shallower than the mixed layer, implying that nitrifiers can efficiently compete with phytoplankton for the ammonium produced by remineralization at low-light intensities. Nitrate produced by nitrification in the mixed layer below the euphotic zone is easily supplied to the euphotic zone waters above, and nitrification sustained 70 ± 30 % of the nitrate uptake in the productive area above the Kerguelen Plateau. This complicates estimations of new production as potentially exportable production. We conclude that high productivity in deep mixing system stimulates the N cycle by increasing both assimilation and regeneration.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-03-17
    Description: We report on the zonal variability of mesopelagic particulate organic carbon remineralization and deep carbon transfer potential during the Kerguelen Ocean and Plateau compared Study 2 expedition (KEOPS 2; October–November 2011) in an area of the polar front supporting recurrent massive blooms from natural Fe fertilization. Mesopelagic carbon remineralization (MR) was assessed using the excess, non-lithogenic particulate barium (Baxs) inventories in mesopelagic waters and compared with bacterial production (BP), surface primary production (PP) and export production (EP). Results for this early season study are compared with the results obtained during a previous study (2005; KEOPS 1) for the same area at a later stage of the phytoplankton bloom. Our results reveal the patchiness of the seasonal advancement and of the establishment of remineralization processes between the plateau (A3) and polar front sites during KEOPS 2. For the Kerguelen plateau (A3 site) we observe a similar functioning of the mesopelagic ecosystem during both seasons (spring and summer), with low and rather stable remineralization fluxes in the mesopelagic column (150–400 m). The shallow water column (~500 m), the lateral advection, the zooplankton grazing pressure and the pulsed nature of the particulate organic carbon (POC) transfer at A3 seem to drive the extent of MR processes on the plateau. For deeper stations (〉2000 m) located on the margin, inside a polar front meander, as well as in the vicinity of the polar front, east of Kerguelen, remineralization in the upper 400 m in general represents a larger part of surface carbon export. However, when considering the upper 800 m, in some cases, the entire flux of exported carbon is remineralized. In the polar front meander, where successive stations form a time series, two successive events of particle transfer were evidenced by remineralization rates: a first mesopelagic and deep transfer from a past bloom before the cruise, and a second transfer expanding at mesopelagic layers during the cruise. Regarding the deep carbon transfer efficiency, it appeared that above the plateau (A3 site) the mesopelagic remineralization was not a major barrier to the transfer of organic matter to the seafloor (close to 500 m). There, the efficiency of carbon transfer to the bottom waters (〉400 m) as assessed by PP, EP and MR fluxes comparisons reached up to 87% of the carbon exported from the upper 150 m. In contrast, at the deeper locations, mesopelagic remineralization clearly limited the transfer of carbon to depths of 〉400 m. For sites at the margin of the plateau (station E-4W) and the polar front (station F-L), mesopelagic remineralization even exceeded upper 150 m export, resulting in a zero transfer efficiency to depths 〉800 m. In the polar front meander (time series), the capacity of the meander to transfer carbon to depth 〉800 m was highly variable (0 to 73%). The highest carbon transfer efficiencies in the meander are furthermore coupled to intense and complete deep (〉800 m) remineralization, resulting again in a near-zero, deep (〉2000 m) carbon sequestration efficiency there.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2023-02-08
    Description: The distribution of dissolved silicon isotopes (δ30Si) was examined along the US GEOTRACES East Pacific Zonal Transect (GP16) extending from Peru to Tahiti (10°S and 15°S latitude). Surface waters in the subtropical gyre displayed high δ30Si due to strong utilization of silicic acid (DSi). In contrast, surface waters close to the Peruvian coast where upwelling prevailed were less depleted and only moderately fractionated. δ30Si of water masses along the transect were compared with the results of an Optimum Multiparameter Analysis that quantified the fractional contributions of endmember water masses in each sample. Strong admixture of intermediate waters obscured the expected heavy isotopic signatures of Subantarctic Mode Water and Antarctic Intermediate Water. Isotope values were nearly homogenous below 2000 m (Average: +1.3 ± 0.1 ‰, 1 s.d.) despite the 25 μmol kg‐1 range in the DSi content among water masses. This homogeneity confirms prior observations and model results that predict nearly constant δ30Si values of +1.0 to +1.2 ‰ for Pacific deep waters with [DSi] 〉 100 μmol kg‐1. Waters above the East Pacific Rise (EPR) influenced by hydrothermal activity showed a small increase in [DSi] together with dissolved iron, but overall stations close to the EPR were slightly depleted in [DSi] (3 to 6 μmol kg‐1) with no significant shift in δ30Si compared to adjacent waters. Hydrothermal [DSi] appears to precipitate within the conduit of the EPR or upon contact with cold seawater resulting in a negligible influence of hydrothermal fluids on δ30Si in deep water. Key Points Surface waters have a large range in dissolved silicon isotopes covering nutrient‐rich coastal upwelling to oligotrophic waters Deep water masses with DSi concentrations 〉 100 μmol kg‐1 show homogenous silicon isotope signatures despite up to 25 μmol kg‐1 differences in [DSi] Hydrothermal fluids have a negligible effect on Si isotope distributions in the deep Pacific
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...