ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: M 23.95547
    Description / Table of Contents: "Updated edition of popular textbook on Artificial Intelligence. This edition specific looks at ways of keeping artificial intelligence under control"
    Type of Medium: Monograph available for loan
    Pages: xvii, 1115 Seiten , Illustrationen
    Edition: Fourth Edition
    ISBN: 9780134610993 , 0134610997
    Series Statement: Pearson Series in Artificial Intelligence
    Language: English
    Note: Contents I Artificial Intelligence 1 Introduction 1.1 What Is AI? 1.2 The Foundations of Artificial Intelligence 1.3 The History of Artificial Intelligence 1.4 The State of the Art 1.5 Risks and Benefits of AI Summary Bibliographical and Historical Notes 2 Intelligent Agents 2.1 Agents and Environments 2.2 Good Behavior: The Concept of Rationality 2.3 The Nature of Environments 2.4 The Structure of Agents Summary Bibliographical and Historical Notes II Problem-solving 3 Solving Problems by Searching 3.1 Problem-Solving Agents 3.2 Example Problems 3.3 Search Algorithms 3.4 Uninformed Search Strategies 3.5 Informed (Heuristic) Search Strategies 3.6 Heuristic Functions Summary Bibliographical and Historical Notes 4 Search in Complex Environments 4.1 Local Search and Optimization Problems 4.2 Local Search in Continuous Spaces 4.3 Search with Nondeterministic Actions 4.4 Search in Partially Observable Environments 4.5 Online Search Agents and Unknown Environments Summary Bibliographical and Historical Notes 5 Constraint Satisfaction Problems 5.1 Defining Constraint Satisfaction Problems 5.2 Constraint Propagation: Inference in CSPs 5.3 Backtracking Search for CSPs 5.4 Local Search for CSPs 5.5 The Structure of Problems Summary Bibliographical and Historical Notes 6 Adversarial Search and Games 6.1 Game Theory 6.2 Optimal Decisions in Games 6.3 Heuristic Alpha-Beta Tree Search 6.4 Monte Carlo Tree Search 6.5 Stochastic Games 6.6 Partially Observable Games 6.7 Limitations of Game Search Algorithms Summary Bibliographical and Historical Notes III Knowledge, reasoning, and planning 7 Logical Agents 7.1 Knowledge-Based Agents 7.2 The Wumpus World 7.3 Logic 7.4 Propositional Logic: A Very Simple Logic 7.5 Propositional Theorem Proving 7.6 Effective Propositional Model Checking 7.7 Agents Based on Propositional Logic Summary Bibliographical and Historical Notes 8 First-Order Logic 8.1 Representation Revisited 8.2 Syntax and Semantics of First-Order Logic 8.3 Using First-Order Logic 8.4 Knowledge Engineering in First-Order Logic Summary Bibliographical and Historical Notes 9 Inference in First-Order Logic 9.1 Propositional vs. First-Order Inference 9.2 Unification and First-Order Inference 9.3 Forward Chaining 9.4 Backward Chaining 9.5 Resolution Summary Bibliographical and Historical Notes 10 Knowledge Representation 10.1 Ontological Engineering 10.2 Categories and Objects 10.3 Events 10.4 Mental Objects and Modal Logic 10.5 Reasoning Systems for Categories 10.6 Reasoning with Default Information Summary Bibliographical and Historical Notes 11 Automated Planning 11.1 Definition of Classical Planning 11.2 Algorithms for Classical Planning 11.3 Heuristics for Planning 11.4 Hierarchical Planning 11.5 Planning and Acting in Nondeterministic Domains 11.6 Time, Schedules, and Resources 11.7 Analysis of Planning Approaches Summary Bibliographical and Historical Notes IV Uncertain knowledge and reasoning 12 Quantifying Uncertainty 12.1 Acting under Uncertainty 12.2 Basic Probability Notation 12.3 Inference Using Full Joint Distributions 12.4 Independence 12.5 Bayes' Rule and Its Use 12.6 Naive Bayes Models 12.7 The Wumpus World Revisited Summary Bibliographical and Historical Notes 13 Probabilistic Reasoning 13.1 Representing Knowledge in an Uncertain Domain 13.2 The Semantics of Bayesian Networks 13.3 Exact Inference in Bayesian Networks 13.4 Approximate Inference for Bayesian Networks 13.5 Causal Networks Summary Bibliographical and Historical Notes 14 Probabilistic Reasoning over Time 14.1 Time and Uncertainty 14.2 Inference in Temporal Models 14.3 Hidden Markov Models 14.4 Kalman Filters 14.5 Dynamic Bayesian Networks Summary Bibliographical and Historical Notes 15 Making Simple Decisions 15.1 Combining Beliefs and Desires under Uncertainty 15.2 The Basis of Utility Theory 15.3 Utility Functions 15.4 Multiattribute Utility Functions 15.5 Decision Networks 15.6 The Value of Information 15.7 Unknown Preferences Summary Bibliographical and Historical Notes 16 Making Complex Decisions 16.1 Sequential Decision Problems 16.2 Algorithms for MDPs 16.3 Bandit Problems 16.4 Partially Observable MDPs 16.5 Algorithms for Solving POMDPs Summary Bibliographical and Historical Notes 17 Multiagent Decision Making 17.1 Properties of Multiagent Environments 17.2 Non-Cooperative Game Theory 17.3 Cooperative Game Theory 17.4 Making Collective Decisions Summary Bibliographical and Historical Notes 18 Probabilistic Programming 18.1 Relational Probability Models 18.2 Open-Universe Probability Models 18.3 Keeping Track of a Complex World 18.4 Programs as Probability Models Summary Bibliographical and Historical Notes V Machine Learning 19 Learning from Examples 19.1 Forms of Learning 19.2 Supervised Learning 19.3 Learning Decision Trees 19.4 Model Selection and Optimization 19.5 The Theory of Learning 19.6 Linear Regression and Classification 19.7 Nonparametric Models 19.8 Ensemble Learning 19.9 Developing Machine Learning Systems Summary Bibliographical and Historical Notes 20 Knowledge in Learning 20.1 A Logical Formulation of Learning 20.2 Knowledge in Learning 20.3 Explanation-Based Learning 20.4 Learning Using Relevance Information 20.5 Inductive Logic Programming Summary Bibliographical and Historical Notes 21 Learning Probabilistic Models 21.1 Statistical Learning 21.2 Learning with Complete Data 21.3 Learning with Hidden Variables: The EM Algorithm Summary Bibliographical and Historical Notes 22 Deep Learning 22.1 Simple Feedforward Networks 22.2 Computation Graphs for Deep Learning 22.3 Convolutional Networks 22.4 Learning Algorithms 22.5 Generalization 22.6 Recurrent Neural Networks 22.7 Unsupervised Learning and Transfer Learning 22.8 Applications Summary Bibliographical and Historical Notes 23 Reinforcement Learning 23.1 Learning from Rewards 23.2 Passive Reinforcement Learning 23.3 Active Reinforcement Learning 23.4 Generalization in Reinforcement Learning 23.5 Policy Search 23.6 Apprenticeship and Inverse Reinforcement Learning 23.7 Applications of Reinforcement Learning Summary Bibliographical and Historical Notes VI Communicating, perceiving, and acting 24 Natural Language Processing 24.1 Language Models 24.2 Grammar 24.3 Parsing 24.4 Augmented Grammars 24.5 Complications of Real Natural Language 24.6 Natural Language Tasks Summary Bibliographical and Historical Notes 25 Deep Learning for Natural Language Processing 25.1 Word Embeddings 25.2 Recurrent Neural Networks for NLP 25.3 Sequence-to-Sequence Models 25.4 The Transformer Architecture 25.5 Pretraining and Transfer Learning 25.6 State of the art Summary Bibliographical and Historical Notes 26 Robotics 26.1 Robots 26.2 Robot Hardware 26.3 What kind of problem is robotics solving? 26.4 Robotic Perception 26.5 Planning and Control 26.6 Planning Uncertain Movements 26.7 Reinforcement Learning in Robotics 26.8 Humans and Robots 26.9 Alternative Robotic Frameworks 26.10 Application Domains Summary Bibliographical and Historical Notes 27 Computer Vision 27.1 Introduction 27.2 Image Formation 27.3 Simple Image Features 27.4 Classifying Images 27.5 Detecting Objects 27.6 The 3D World 27.7 Using Computer Vision Summary Bibliographical and Historical Notes VII Conclusions 28 Philosophy, Ethics, and Safety of AI 28.1 The Limits of AI 28.2 Can Machines Really Think? 28.3 The Ethics of AI Summary Bibliographical and Historical Notes 29 The Future of AI 29.1 AI Components 29.2 AI Architectures A Mathematical Background A.1 Complexity Analysis and 0() Notation A.2 Vectors, Matrices, and Linear Algebra A.3 Probability Distributions Bibliographical and Historical Notes B Notes on Languages and Algorithms B. l Defining Languages with Backus-Naur Form (BNF) B.2 Describing Algorithms with Pseudocode B.3 Online Supplemental Material Bibliography Index
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Publications de l’Institut de recherches historiques du Septentrion
    Publication Date: 2024-03-25
    Description: Les arts premiers semblent n’avoir été représentés que rarement dans la peinture ou la littérature du Moyen âge à la fin du 18e siècle. Difficile à attester, il est cependant certains que des sculptures et objets « exotiques » faisaient bien partie de la cargaison des navires marchands européens. Les pièces les plus fragiles, celles en bois, ont souvent disparu victime du temps, alors que les ivoires font partie des artefacts les mieux conservés parmi ces artificialia : « Les collections ethnologiques, incluses dans ces lieux, ont rarement bien survécu. De temps à autre des écrits, postérieurs en gardent trace. Ainsi le fils d’André Tiraqueau, ami et protecteur de Rabelais, détenait une collection africaine du début du siècle, mais perdue depuis. Quelques années plus tard Charles le Bold rechercha et acheta des pièces africaines en 1489, à l’embouchure du Congo, pour le compte du roi du Portugal. Parmi elles se trouvaient des sculptures en ivoire et des étoffes en fibres végétales. Il apparaît quasiment impossible de connaître la date d’arrivée en Europe » indique Josette Rivallain, maître de conférences au Muséum national d'histoire naturelle (« Cabinets de curiosité, aux origines des musées », Outre-mers, 2001, Volume 88, p. 20). Repérer la mention d’objets ethnographiques dans les archives de cette période n’est guère plus simple, la provenance géographique de ces objets hétérogènes amassés pèle mêle n’étant souvent pas indiquée. Un des cabinets de curiosités les plus connus est celui du physicien hollandais Bernadus Paludanus (1550-1633) qui constitua une collection d’ethnographie africaine en 1580 à Enkhuizen aux Pays-Bas. La réflexion sur les artefacts non occidentaux prit une nouvelle envergure/dimension au début du 19e siècle. On assista alors à la naissance d’un changement de regard vis-à-vis de ces objets qui désormais furent classés et décrits par leurs possesseurs.
    Keywords: D1-2009 ; Europe du Nord-Ouest ; musées ; arts premiers ; Europe ; France ; Pays-Bas ; Belgique ; thema EDItEUR::D Biography, Literature and Literary studies::D Biography, Literature and Literary studies::DN Biography and non-fiction prose
    Language: French
    Format: image/png
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-10-27
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2015. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 28, no. 4 (2015): 54–63, doi:10.5670/oceanog.2015.81.
    Description: Current structure, transport, and water mass properties of the northward-flowing Kuroshio and the southward-flowing Luzon Undercurrent (LU) were observed for nearly one year, June 8, 2012–June 4, 2013, across the Kuroshio path at 18.75°N. Observations were made from four platforms: an array of six subsurface ADCP moorings, two Seagliders, fivepressure inverted echo sounders (PIES), and five horizontal electric field (HEF) sensors, providing the most detailed time series of the Kuroshio and Luzon Undercurrent water properties to date. Ocean state estimates of the western boundary current system were performed using the MIT general circulation model—four-dimensional variational assimilation (MITgcm-4D-Var) system. Prominent Kuroshio features from observations are simulated well by the numerical model. Annual mean Kuroshio transport, averaged over all platforms, is ~16 Sv with a standard deviation ~4 Sv. Kuroshio and LU transports and water mass pathways east of Luzon are revealed by Seaglider measurements. In a layer above the salinity maximum associated with North Pacific Tropical Water (NPTW), Kuroshio transport is ~7 Sv and contains North Equatorial Current (NEC) and Western Philippine Sea (WPS) waters, with an insignificant amount of South China Sea water on the shallow western flank. In an intermediate layer containing the core of the NPTW, Kuroshio transport is ~10 Sv, consisting mostly of NEC water. In the lower layer of the Kuroshio, transport is ~1.5 Sv of mostly North Pacific Intermediate Water (NPIW) as a part of WPS waters. Annual mean Luzon Undercurrent southward transport integrated to 1,000 m depth is ~2.7 Sv with a standard deviation ~2 Sv, carrying solely WPS waters below the salinity minimum of the NPIW. The transport of the western boundary current integrated over the full ocean depth east of Luzon Island is ~14 ± 4.5 Sv. Sources of the water masses in the Kuroshio and Luzon Undercurrent are confirmed qualitatively by the numerical model.
    Description: This work was supported by the US Office of Naval Research (N00014-10-1-0273 and N00014-15-1-2285 to BDC, N00014-10-1-0273 to GG, N00014-14-1-0065 to ALG, N00014-10-1-0468 to TBS, N0001-10-1-0273 to LRC, N00014-10-1-0308 to CML, N00014-10-1-0397 and N00014-10-1-0273 to BM, N00014-10-1-0397 to RCL, and N00014-10-1-0268 to SRJ) and the Taiwan Ministry of Science and Technology. Yang, Chang, and Mensah are supported by the Taiwan Ministry of Science and Technology.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 3519–3542, doi:10.1002/2016JC012519.
    Description: Observations from two companion field programs—Origins of the Kuroshio and Mindanao Current (OKMC) and Observations of Kuroshio Transport Variability (OKTV)—are used here to examine the Kuroshio's temporal and spatial evolution. Kuroshio strength and velocity structure were measured between June 2012 and November 2014 with pressure-sensor equipped inverted echo sounders (PIESs) and upward-looking acoustic Doppler current profilers (ADCPs) deployed across the current northeast of Luzon, Philippines, and east of Taiwan with an 8 month overlap in the two arrays' deployment periods. The time-mean net (i.e., integrated from the surface to the bottom) absolute transport increases downstream from 7.3 Sv (±4.4 Sv standard error) northeast of Luzon to 13.7 Sv (±3.6 Sv) east of Taiwan. The observed downstream increase is consistent with the return flow predicted by the simple Sverdrup relation and the mean wind stress curl field over the North Pacific (despite the complicated bathymetry and gaps along the North Pacific western boundary). Northeast of Luzon, the Kuroshio—bounded by the 0 m s−1 isotach—is shallower than 750 dbar, while east of Taiwan areas of positive flow reach to the seafloor (3000 m). Both arrays indicate a deep counterflow beneath the poleward-flowing Kuroshio (–10.3 ± 2.3 Sv by Luzon and −12.5 ± 1.2 Sv east of Taiwan). Time-varying transports and velocities indicate the strong influence at both sections of westward propagating eddies from the ocean interior. Topography associated with the ridges east of Taiwan also influences the mean and time-varying velocity structure there.
    Description: Office of Naval Research (ONR) Grant Numbers: N00014-15-12593 , N00014-16-13069; Taiwan's Ministry of Science and Technology Grant Numbers: NSC 101-2611-M-002-018-MY3 , MOST 103-2611-M-002-011 , MOST 105-2119-M-002-042; ONR Grant Numbers: N00014-10-1-0308 , N00015-10-1-0469
    Description: 2017-11-02
    Keywords: Kuroshio ; PIES ; ADCP ; Eddies ; Western boundary current ; Altimetry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2015. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 28, no. 4 (2015): 74–83, doi:10.5670/oceanog.2015.83.
    Description: The Kuroshio is important to climate, weather prediction, and fishery management along the northeast coast of Asia because it transports tremendous heat, salt, and energy from east of the Philippines to waters southeast of Japan. In the middle of its journey northward, the Kuroshio’s velocity mean and its variability east of Taiwan crucially affect its downstream variability. To improve understanding of the Kuroshio there, multiple platforms were used to collect intensive observations off Taiwan during the three-year Observations of the Kuroshio Transports and their Variability (OKTV) program (2012–2015). Mean Kuroshio velocity transects show two velocity maxima southeast of Taiwan, with the primary velocity core on the onshore side of the Kuroshio exhibiting a mean maximum velocity of ~1.2 m s–1. The two cores then merge and move at a single velocity maximum of ~1 m s–1 east of Taiwan. Standard deviations of both the directly measured poleward (v) and zonal (u) velocities are ~0.4 m s–1 in the Kuroshio main stream. Water mass exchange in the Kuroshio east of Taiwan was found to be complicated, as it includes water of Kuroshio origin, South China Sea Water, and West Philippine Sea Water, and it vitally affects heat, salt, and nutrient inputs to the East China Sea. Impinging eddies and typhoons are two of the principal causes of variability in the Kuroshio. This study’s models are more consistent with the observed Kuroshio than with high-frequency radar measurements.
    Description: This study was sponsored by the Ministry of Science and Technology (MOST) of the ROC (Taiwan) under grants NSC 101-2611-M-002-018-MY3, NSC 101-2611- M-019-002, NSC 102-2611-M-002-017, NSC 102-2611- M-019-012, MOST 103-2611-M-002-014, and MOST 103-2611-M-002-018. MA was sponsored by the US Office of Naval Research under grant N00014- 12-1-0445. YHT was supported by NSF Earth System Model (EaSM) Grant 1419292.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 521 (2015): 65-69, doi:10.1038/nature14399.
    Description: Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they impact a panoply of ocean processes, such as the supply of nutrients for photosynthesis1, sediment and pollutant transport2 and acoustic transmission3; they also pose hazards for manmade structures in the ocean4. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking5, posing severe challenges for their observation and their inclusion in numerical climate models, which are sensitive to their effects6-7. Over a decade of studies8-11 have targeted the South China Sea, where the oceans’ most powerful internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their generation mechanism, variability and energy budget, however, due to the lack of in-situ data from the Luzon Strait, where extreme flow conditions make measurements challenging. Here we employ new observations and numerical models to (i) show that the waves begin as sinusoidal disturbances rather than from sharp hydraulic phenomena, (ii) reveal the existence of 〉200-m-high breaking internal waves in the generation region that give rise to turbulence levels 〉10,000 times that in the open ocean, (iii) determine that the Kuroshio western boundary current significantly refracts the internal wave field emanating from the Luzon Strait, and (iv) demonstrate a factor-of-two agreement between modelled and observed energy fluxes that enables the first observationally-supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions.
    Description: Our work was supported by the U.S. Office of Naval Research and the Taiwan National Science Council.
    Description: 2015-10-29
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-10-12
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(5), (2020): e2020JC016123, doi:10.1029/2020JC016123.
    Description: The processes underlying the strong Kuroshio encountering a cape at the southernmost tip of Taiwan are examined with satellite‐derived chlorophyll and temperature maps, a drifter trajectory, and realistic model simulations. The interaction spurs the formation of submesoscale cyclonic eddies that trap cold and high‐chlorophyll water and the formation of frontal waves between the free stream and the wake flow. An observed train of eddies, which have relative vorticity about one to four times the planetary vorticity (f), is shed from the recirculation that occurs in the immediate lee of the cape as a result of flow separation. These propagate downstream at a speed of 0.5–0.6 m s−1. Farther downstream, the corotation and merging of two or three adjacent eddies are common owing to the topography‐induced slowdown of eddy propagation farther downstream. It is found that the relative vorticity of a corotating system (1.2f) is 70% weaker than that of a single eddy due to the increase of eddy diameter from ~16 to ~33 km, in agreement with Kelvin's circulation theorem. The shedding period of the submesoscale eddies is strongly modulated by either diurnal or semidiurnal tidal flows, which typically reach 0.2–0.5 m s−1, whereas its intrinsic shedding period is insignificant. The frontal waves predominate in the horizontal free shear layer emitted from the cape, as well as a density front. Energetics analysis suggests that the wavy features result primarily from the growth of barotropic instability in the free shear layer, which may play a secondary process in the headland wake.
    Description: Yu‐Hsin Cheng was supported by the CWB of Taiwan through Grant 1062076C. Ming‐Huei Chang was supported by the Ministry of Science and Technology of Taiwan (MOST) under Grants 103‐2611‐M‐002‐018, 105‐2611‐M‐002‐012, and 107‐2611‐M‐002‐015. Sen Jan was supported with MOST Grants 101‐2611‐M‐002‐018‐MY3, 103‐2611‐M‐002‐011, and 105‐2119‐M‐002‐042. Magdalena Andres was supported by the U.S. Office of Naval Research Grant N000141613069.
    Description: 2020-10-23
    Keywords: Kuroshio ; Submesoscale eddy ; Headland ; Recirculation ; Eddy corotation ; Barotropic instability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 9744–9764, doi:10.1002/2017JC013476.
    Description: Quasi-geostrophic mesoscale eddies regularly impinge on the Kuroshio in the western North Pacific, but the processes underlying the evolution of these eddy-Kuroshio interactions have not yet been thoroughly investigated in the literature. Here this interaction is examined with results from a semi-idealized three-dimensional numerical model and observations from four pressure-sensor equipped inverted echo sounders (PIESs) in a zonal section east of Taiwan and satellite altimeters. Both the observations and numerical simulations suggest that, during the interaction of a cyclonic eddy with the Kuroshio, the circular eddy is deformed into an elliptic shape with the major axis in the northwest-southeast direction, before being dissipated; the poleward velocity and associated Kuroshio transport decrease and the sea level and pycnocline slopes across the Kuroshio weaken. In contrast, for an anticyclonic eddy during the eddy-Kuroshio interaction, variations in the velocity, sea level, and isopycnal depth are reversed; the circular eddy is also deformed to an ellipse but with the major axis parallel to the Kuroshio. The model results also demonstrate that the velocity field is modified first and consequently the SSH and isopycnal depth evolve during the interaction. Furthermore, due to the combined effect of impingement latitude and realistic topography, some eddy-Kuroshio interactions east of Taiwan are found to have remote effects, both in the Luzon Strait and on the East China Sea shelf northeast of Taiwan.
    Description: Ministry of Science and Technology Grant Numbers: MOST-101-2611-M-002-018-MY3, MOST 103-2611-M-002-011, MOST 105-2119-M-002-042; Office of Naval Research. Grant Numbers: N00014-15-12593, N00014-16-13069; MHC. Grant Number: MOST-101-2611-M-019-002
    Description: 2018-06-11
    Keywords: Kuroshio ; Mesoscale eddy ; Interaction ; Observation ; Modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...