ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-03-01
    Description: The variation of wind-optimal transatlantic flight routes and their turbulence potential is investigated to understand how upper-level winds and large-scale flow patterns can affect the efficiency and safety of long-haul flights. In this study, the wind-optimal routes (WORs) that minimize the total flight time by considering wind variations are modeled for flights between John F. Kennedy International Airport (JFK) in New York, New York, and Heathrow Airport (LHR) in London, United Kingdom, during two distinct winter periods of abnormally high and low phases of North Atlantic Oscillation (NAO) teleconnection patterns. Eastbound WORs approximate the JFK–LHR great circle (GC) route following northerly shifted jets in the +NAO period. Those WORs deviate southward following southerly shifted jets during the −NAO period, because eastbound WORs fly closely to the prevailing westerly jets to maximize tailwinds. Westbound WORs, however, spread meridionally to avoid the jets near the GC in the +NAO period to minimize headwinds. In the −NAO period, westbound WORs are north of the GC because of the southerly shifted jets. Consequently, eastbound WORs are faster but have higher probabilities of encountering clear-air turbulence than westbound ones, because eastbound WORs are close to the jet streams, especially near the cyclonic shear side of the jets in the northern (southern) part of the GC in the +NAO (−NAO) period. This study suggests how predicted teleconnection weather patterns can be used for long-haul strategic flight planning, ultimately contributing to minimizing aviation’s impact on the environment.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-10-01
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-04-01
    Description: A time-lagged ensemble of energy dissipation rate (EDR)-scale turbulence metrics is evaluated against in situ EDR observations from commercial aircraft over the contiguous United States and applied to air-traffic management (ATM) route planning. This method uses the Graphic Turbulence Guidance forecast methodology with three modifications. First, it uses the convection-permitting-scale (Δx = 3 km) Advanced Research version of the Weather Research and Forecasting Model (ARW) to capture cloud-resolving-scale weather phenomena. Second, turbulence metrics are computed for multiple ARW forecasts that are combined at the same forecast valid time, resulting in a time-lagged ensemble of multiple turbulence metrics. Third, probabilistic turbulence forecasts are provided on the basis of the ensemble results, which are applied to the ATM route planning. Results show that the ARW forecasts match well with observed weather patterns and the overall performance skill of the ensemble turbulence forecast when compared with the observed data is superior to any single turbulence metric. An example wind-optimal route (WOR) is computed using areas experiencing ≥10% probability of encountering severe-or-greater turbulence. Using these turbulence data, lateral turbulence avoidance routes starting from three different waypoints along the WOR from Los Angeles International Airport to John F. Kennedy International Airport are calculated. The examples illustrate the trade-off between flight time/fuel used and turbulence avoidance maneuvers.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-04-21
    Description: No abstract available
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN54470 , AOSP R&D Partnership Workshop; 10 Apr. 2018; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2017-11-29
    Description: No abstract available
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN46065
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-27
    Description: Unexpected turbulence especially in the upper troposphere and lower stratosphere where cabin crews and passengers in cruising aircraft are likely to unbuckle causes in-flight injuries, structural damage, and flight delay. Therefore, turbulence information can be used to improve safety while pursuing efficiency in Air-Traffic Management (ATM). In this chapter, simple modeling of aircraft trajectories combined with wind and turbulence predictions can suggest the optimal solution of flight plans that minimizes both total flight time (e.g., fuel consumption) and potential encounters of turbulence from departure to arrival airports. Also, probabilistic ensemble turbulence forecasts are applied to suggest an optimal strategic and tactical ATM route planning in a given weather and turbulence condition in the United States which are evaluated against in situ Eddy Dissipation Rate observations from commercial aircraft. Finally, variations of long-haul trans-Oceanic flight routes and their turbulence potentials are investigated using a global reanalysis data to understand how the upper-level large-scale flow patterns can affect the long-term ATM planning through the changes of winds and turbulence conditions.
    Keywords: Aerodynamics; Aircraft Communications and Navigation
    Type: ARC-E-DAA-TN22131 , Aviation Turbulence: Processes, Detection, Prediction ; 481-500
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-27
    Description: Weather can cause flight diversions, passenger delays, additional fuel consumption and schedule disruptions at any high volume airport. The impacts are particularly acute at the Ted Stevens Anchorage International Airport in Anchorage, Alaska due to its importance as a major international portal. To minimize the impacts due to weather, a multi-stage scheduling process is employed that is iteratively executed, as updated aircraft demand and/or airport capacity data become available. The strategic scheduling algorithm assigns speed adjustments for flights that originate outside of Anchorage Center to achieve the proper demand and capacity balance. Similarly, an internal departure-scheduling algorithm assigns ground holds for pre-departure flights that originate from within Anchorage Center. Tactical flight controls in the form of airborne holding are employed to reactively account for system uncertainties. Real-world scenarios that were derived from the January 16, 2012 Anchorage visibility observations and the January 12, 2012 Anchorage arrival schedule were used to test the initial implementation of the scheduling algorithm in fast-time simulation experiments. Although over 90% of the flights in the scenarios arrived at Anchorage without requiring any delay, pre-departure scheduling was the dominant form of control for Anchorage arrivals. Additionally, tactical scheduling was used extensively in conjunction with the pre-departure scheduling to reactively compensate for uncertainties in the arrival demand. For long-haul flights, the strategic scheduling algorithm performed best when the scheduling horizon was greater than 1,000 nmi. With these long scheduling horizons, it was possible to absorb between ten and 12 minutes of delay through speed control alone. Unfortunately, the use of tactical scheduling, which resulted in airborne holding, was found to increase as the strategic scheduling horizon increased because of the additional uncertainty in the arrival times of the aircraft. Findings from these initial experiments indicate that it is possible to schedule arrivals into Anchorage with minimal delays under low-visibility conditions with less disruption to high-cost, international flights.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN4653 , AIAA Paper 2012-5021
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: Presentation highlighting how weather affected UAS operations during the UTM field tests. Research to develop UAS weather translation models with a description of current and future work for UTM weather.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN39662 , NextGen Executive Weather Panel presentation; Mar 08, 2017; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: A new method for forecasting turbulence is developed and evaluated using the high resolution weather model and in situ turbulence observations from commercial aircraft. The new method is an ensemble of various turbulence metrics from multiple time-lagged ensemble forecasts created using a sequence of four procedures. These include weather modeling, calculation of turbulence metrics, mapping the metrics into a common turbulence-scale, and production of final forecast. The new method uses similar methodology as current operational turbulence forecast with three improvements. First, it uses a higher resolution ((delta)x = 3 km) weather model to capture cloud resolving scale phenomena. Second, it computes the metrics for multiple forecasts that are combined at the same valid time resulting in a time-lagged ensemble of multiple turbulence metrics. Finally, it provides both deterministic and probabilistic turbulence forecasts. Results show the new forecasts match well with observed radar reflectivity along a surface front as well as convectively induced turbulence outside the clouds on research period. Overall performance skill of the new turbulence forecast compared with the observed EDR data during the research period is superior to any single turbulence metric. The probabilistic turbulence forecast is used in an example air traffic management application for creating a wind-optimal route considering turbulence information. The wind-optimal route passing through areas of 50% potential for moderate-or-greater turbulence and the lateral turbulence avoidance routes starting from three different waypoints along the wind-optimal route from Los Angeles international airport to John F. Kennedy international airport are calculated using different turbulence forecasts. This example shows additional flight time is required to avoid potential turbulence encounters.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN10626 , Aviation, Range, and Aerospace Meteorology Special Symposium; Feb 02, 2014 - Feb 06, 2014; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Projected increases in new vehicle types, new missions, and the continual growth in traditional (e.g., airlines, general aviation) aviation will require changes to the current air traffic system, particularly to accommodate the desire of operators to be more involved in air traffic decisions. To address these challenges, the National Airspace System needs to undergo a transformation to a more scalable, flexible, user-focused system that addresses safety and security requirements and resiliency for current and new users. A system designed to integrate modular software services, provided by users, third parties and government for air traffic management functions, will be scalable and more easily allow modernization and for collaboration between users and service providers. ATM-X is responding to NASA's pivot towards integrating projected new, diverse entrants into the NAS, while also leveraging NASA's prior ATM achievements that continue to improve traditional airspace operations. This project is a two-phased approach to conduct research and focused evaluations to assess the feasibility of a service-based approach and to identify critical design considerations to enable airspace access for new entrants, integrated with current traditional operations. Phase 1 research will be conducted to determine what is needed to reach the ATM-X goals based on specific use-cases to enable large-scale, passenger-carrying Urban Air Mobility operations in a metroplex environment, and also to improve traditional operations in the Northeast Region leveraging mature NASA technologies. Some of these evaluations will be conducted in simulations and field activities. Phase 2 will build upon Phase 1 towards more defined, focused research and field demonstrations in real-world environments to integrate multiple elements of a scalable, service-based ATM-X concept.
    Keywords: Aircraft Communications and Navigation
    Type: ARC-E-DAA-TN57276 , AIAA Aviation Forum 2018; Jun 25, 2018 - Jun 29, 2018; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...