ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-10-14
    Description: Alzheimer's disease is the most common form of dementia, characterized by two pathological hallmarks: amyloid-beta plaques and neurofibrillary tangles. The amyloid hypothesis of Alzheimer's disease posits that the excessive accumulation of amyloid-beta peptide leads to neurofibrillary tangles composed of aggregated hyperphosphorylated tau. However, to date, no single disease model has serially linked these two pathological events using human neuronal cells. Mouse models with familial Alzheimer's disease (FAD) mutations exhibit amyloid-beta-induced synaptic and memory deficits but they do not fully recapitulate other key pathological events of Alzheimer's disease, including distinct neurofibrillary tangle pathology. Human neurons derived from Alzheimer's disease patients have shown elevated levels of toxic amyloid-beta species and phosphorylated tau but did not demonstrate amyloid-beta plaques or neurofibrillary tangles. Here we report that FAD mutations in beta-amyloid precursor protein and presenilin 1 are able to induce robust extracellular deposition of amyloid-beta, including amyloid-beta plaques, in a human neural stem-cell-derived three-dimensional (3D) culture system. More importantly, the 3D-differentiated neuronal cells expressing FAD mutations exhibited high levels of detergent-resistant, silver-positive aggregates of phosphorylated tau in the soma and neurites, as well as filamentous tau, as detected by immunoelectron microscopy. Inhibition of amyloid-beta generation with beta- or gamma-secretase inhibitors not only decreased amyloid-beta pathology, but also attenuated tauopathy. We also found that glycogen synthase kinase 3 (GSK3) regulated amyloid-beta-mediated tau phosphorylation. We have successfully recapitulated amyloid-beta and tau pathology in a single 3D human neural cell culture system. Our unique strategy for recapitulating Alzheimer's disease pathology in a 3D neural cell culture model should also serve to facilitate the development of more precise human neural cell models of other neurodegenerative disorders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4366007/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4366007/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Choi, Se Hoon -- Kim, Young Hye -- Hebisch, Matthias -- Sliwinski, Christopher -- Lee, Seungkyu -- D'Avanzo, Carla -- Chen, Hechao -- Hooli, Basavaraj -- Asselin, Caroline -- Muffat, Julien -- Klee, Justin B -- Zhang, Can -- Wainger, Brian J -- Peitz, Michael -- Kovacs, Dora M -- Woolf, Clifford J -- Wagner, Steven L -- Tanzi, Rudolph E -- Kim, Doo Yeon -- 5P01AG15379/AG/NIA NIH HHS/ -- 5R37MH060009/MH/NIMH NIH HHS/ -- P01 AG004953/AG/NIA NIH HHS/ -- P01 AG015379/AG/NIA NIH HHS/ -- P30 HD018655/HD/NICHD NIH HHS/ -- P30 NS045776/NS/NINDS NIH HHS/ -- P50 AG005134/AG/NIA NIH HHS/ -- R01 AG014713/AG/NIA NIH HHS/ -- R01 NS045860/NS/NINDS NIH HHS/ -- R21 AG031483/AG/NIA NIH HHS/ -- RF1 AG048080/AG/NIA NIH HHS/ -- England -- Nature. 2014 Nov 13;515(7526):274-8. doi: 10.1038/nature13800. Epub 2014 Oct 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA [2]. ; 1] Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA [2] Division of Mass Spectrometry Research, Korea Basic Science Institute, Cheongju-si, Chungbuk 363-883, South Korea [3]. ; 1] Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA [2] Institute of Reconstructive Neurobiology, Life and Brain Center, University of Bonn and Hertie Foundation, 53127 Bonn, Germany. ; Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA. ; FM Kirby Neurobiology Center, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, Massachusetts 02115, USA. ; The Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA. ; Institute of Reconstructive Neurobiology, Life and Brain Center, University of Bonn and Hertie Foundation, 53127 Bonn, Germany. ; Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25307057" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/genetics/*metabolism/*pathology ; Amyloid beta-Peptides/chemistry/genetics/metabolism ; Cell Culture Techniques/*methods ; Cell Differentiation ; Drug Evaluation, Preclinical/methods ; Extracellular Space/metabolism ; Glycogen Synthase Kinase 3/metabolism ; Humans ; Microtubule-Associated Proteins/metabolism ; *Models, Biological ; Neural Stem Cells/*metabolism/pathology ; Neurites/metabolism ; Phosphorylation ; Presenilin-1/metabolism ; Protein Aggregation, Pathological ; Reproducibility of Results ; tau Proteins/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-03-15
    Description: After central nervous system (CNS) injury, inhibitory factors in the lesion scar and poor axon growth potential prevent axon regeneration. Microtubule stabilization reduces scarring and promotes axon growth. However, the cellular mechanisms of this dual effect remain unclear. Here, delayed systemic administration of a blood-brain barrier-permeable microtubule-stabilizing drug, epothilone B (epoB), decreased scarring after rodent spinal cord injury (SCI) by abrogating polarization and directed migration of scar-forming fibroblasts. Conversely, epothilone B reactivated neuronal polarization by inducing concerted microtubule polymerization into the axon tip, which propelled axon growth through an inhibitory environment. Together, these drug-elicited effects promoted axon regeneration and improved motor function after SCI. With recent clinical approval, epothilones hold promise for clinical use after CNS injury.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445125/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445125/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ruschel, Jorg -- Hellal, Farida -- Flynn, Kevin C -- Dupraz, Sebastian -- Elliott, David A -- Tedeschi, Andrea -- Bates, Margaret -- Sliwinski, Christopher -- Brook, Gary -- Dobrindt, Kristina -- Peitz, Michael -- Brustle, Oliver -- Norenberg, Michael D -- Blesch, Armin -- Weidner, Norbert -- Bunge, Mary Bartlett -- Bixby, John L -- Bradke, Frank -- R01 HD057632/HD/NICHD NIH HHS/ -- R01 NS059866/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2015 Apr 17;348(6232):347-52. doi: 10.1126/science.aaa2958. Epub 2015 Mar 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany. ; The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 Northwest 14th Terrace, Miami, FL33136, USA. ; Spinal Cord Injury Center, Heidelberg University Hospital, Schlierbacher Landstr. 200A, 69118 Heidelberg, Germany. ; Institute for Neuropathology, RWTH Aachen University, Steinbergweg 20, 52074, Aachen, Germany. Julich-Aachen Research Alliance-Translational Brain Medicine. ; Institute of Reconstructive Neurobiology, Life&Brain Center, University of Bonn and Hertie Foundation, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany. ; Departments of Pathology, Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, FL 33101, USA. ; Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany. frank.bradke@dzne.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25765066" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*drug effects/physiology ; Cell Movement/drug effects ; Cell Polarity/drug effects ; Cicatrix/pathology/*prevention & control ; Epothilones/*administration & dosage ; Fibroblasts/drug effects/pathology ; Humans ; Meninges/drug effects/pathology ; Motor Activity/drug effects ; Nerve Regeneration/*drug effects ; Neurons/drug effects/pathology ; Rats ; Spinal Cord Injuries/*drug therapy/pathology/physiopathology ; Tubulin Modulators/*administration & dosage
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-10-19
    Description: The integration of detrital zircon age and trace element analyses provides a powerful tool with which to reconstruct continental arc evolution. Detrital zircons from the Ross-Delamerian orogen along the Pacific-Gondwana margin in north Victoria Land in Antarctica yield a broad 700–500 Ma U-Pb age population that shows a prominent period of activity centered at ca. 630–550 Ma. This activity is well correlated with the highest zircon Th/U and U/Yb ratios, suggesting an increase in lithospheric contribution coincident with fluid input from oceanic slab subduction, respectively. A low Yb/Gd ratio over this same period also suggests crustal thickening. Determination of zircon parent rock types using trace element proxies reveals the presence of previously unrecognized distinct pulses of granitoid activity that occur over tens of millions of years. Lulls between granitoid flare-ups overlap with increases in mafic-carbonatite-alkaline magma production, suggesting an influx of mantle or lower crustal melts during syn-subduction extension. A concomitant increase in the number of metamorphic zircons (U/Th 〉 10) and 40 Ar/ 39 Ar white mica cooling ages found during these extensional episodes suggest that significant thermal perturbations of the crust coincided with orogenic cooling, which was possibly influenced by uplift and exhumation.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-09-28
    Description: The article draws attention to the increasing environmental pollution caused by the development of vehicle transport and motorization. Different types of design solutions used in vehicles for the reduction of fuel consumption, and thereby emission of toxic gasses into the atmosphere, were specified. Historical design solutions concerning energy recovery devices in mechanical vehicles which used flywheels to accumulate kinetic energy were shown. Developmental tendencies in the area of vehicle manufacturing in the form of hybrid electric and electric devices were discussed. Furthermore, designs of energy recovery devices with electrical energy storage from the vehicle braking and shock absorbing systems were presented. A mechanical energy storing device using a flywheel operating under vacuum was presented, as were advantages and disadvantages of both systems, the limitations they impose on individual constructions and safety issues. The paper also discusses a design concept of an...
    Print ISSN: 1757-8981
    Electronic ISSN: 1757-899X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-09-01
    Print ISSN: 1757-8981
    Electronic ISSN: 1757-899X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...