ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-02-17
    Description: Injury or impaired clearance of apoptotic cells leads to the pathological accumulation of necrotic corpses, which induce an inflammatory response that initiates tissue repair. In addition, antigens present in necrotic cells can sometimes provoke a specific immune response and it has been argued that necrosis could explain adaptive immunity in seemingly infection-free situations, such as after allograft transplantation or in spontaneous and therapy-induced tumour rejection. In the mouse, the CD8alpha+ subset of dendritic cells phagocytoses dead cell remnants and cross-primes CD8+ T cells against cell-associated antigens. Here we show that CD8alpha+ dendritic cells use CLEC9A (also known as DNGR-1), a recently-characterized C-type lectin, to recognize a preformed signal that is exposed on necrotic cells. Loss or blockade of CLEC9A does not impair the uptake of necrotic cell material by CD8+ dendritic cells, but specifically reduces cross-presentation of dead-cell-associated antigens in vitro and decreases the immunogenicity of necrotic cells in vivo. The function of CLEC9A requires a key tyrosine residue in its intracellular tail that allows the recruitment and activation of the tyrosine kinase SYK, which is also essential for cross-presentation of dead-cell-associated antigens. Thus, CLEC9A functions as a SYK-coupled C-type lectin receptor to mediate sensing of necrosis by the principal dendritic-cell subset involved in regulating cross-priming to cell-associated antigens.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2671489/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2671489/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sancho, David -- Joffre, Olivier P -- Keller, Anna M -- Rogers, Neil C -- Martinez, Dolores -- Hernanz-Falcon, Patricia -- Rosewell, Ian -- Reis e Sousa, Caetano -- A3598/Cancer Research UK/United Kingdom -- Cancer Research UK/United Kingdom -- England -- Nature. 2009 Apr 16;458(7240):899-903. doi: 10.1038/nature07750.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunobiology Laboratory, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19219027" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD8/metabolism ; CD8-Positive T-Lymphocytes/immunology ; Cells, Cultured ; Cross-Priming/immunology ; Dendritic Cells/*immunology/*metabolism ; Humans ; Lectins, C-Type/deficiency/genetics/*metabolism ; Ligands ; Mice ; Necrosis/*immunology/*metabolism ; Phagocytosis ; Receptors, Immunologic/deficiency/genetics/*metabolism ; Receptors, Mitogen/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-03-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reis e Sousa, Caetano -- New York, N.Y. -- Science. 2007 Mar 9;315(5817):1376-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunobiology Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK. caetano@cancer.org.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17347432" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Autophagy ; Cytokines/metabolism ; Dendritic Cells/*immunology/physiology/*virology ; Endosomes/immunology/virology ; Histocompatibility Antigens Class I/immunology ; Histocompatibility Antigens Class II/immunology ; Membrane Glycoproteins/immunology/physiology ; Mice ; Mice, Transgenic ; RNA, Viral/*immunology/metabolism ; Rhabdoviridae Infections/*immunology ; Signal Transduction ; Toll-Like Receptor 7/immunology/physiology ; Toll-Like Receptor 9/immunology/physiology ; Toll-Like Receptors/immunology/*physiology ; Vesicular stomatitis Indiana virus/*immunology/physiology ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-02-21
    Description: Interferons (IFNs) are critical for protection from viral infection, but the pathways linking virus recognition to IFN induction remain poorly understood. Plasmacytoid dendritic cells produce vast amounts of IFN-alpha in response to the wild-type influenza virus. Here, we show that this requires endosomal recognition of influenza genomic RNA and signaling by means of Toll-like receptor 7 (TLR7) and MyD88. Single-stranded RNA (ssRNA) molecules of nonviral origin also induce TLR7-dependent production of inflammatory cytokines. These results identify ssRNA as a ligand for TLR7 and suggest that cells of the innate immune system sense endosomal ssRNA to detect infection by RNA viruses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diebold, Sandra S -- Kaisho, Tsuneyasu -- Hemmi, Hiroaki -- Akira, Shizuo -- Reis e Sousa, Caetano -- New York, N.Y. -- Science. 2004 Mar 5;303(5663):1529-31. Epub 2004 Feb 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunobiology Laboratory, Cancer Research UK, London Research Institute, London WC2A 3PX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14976261" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Animals ; Antigens, Differentiation/metabolism ; Cells, Cultured ; Cytokines/biosynthesis ; Dendritic Cells/*immunology ; Endocytosis ; Endosomes/immunology/virology ; Genome, Viral ; *Immunity, Innate ; Influenza A virus/genetics/*immunology ; Interferon-alpha/biosynthesis ; Ligands ; Membrane Glycoproteins/*metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Myeloid Differentiation Factor 88 ; Poly U/immunology ; Polyribonucleotides/immunology ; RNA/*immunology ; RNA, Viral/*immunology ; Receptors, Cell Surface/*metabolism ; Receptors, Immunologic/metabolism ; Signal Transduction ; Toll-Like Receptor 7
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-08-15
    Description: Mammalian cells possess mechanisms to detect and defend themselves from invading viruses. In the cytosol, the RIG-I-like receptors (RLRs), RIG-I (retinoic acid-inducible gene I; encoded by DDX58) and MDA5 (melanoma differentiation-associated gene 5; encoded by IFIH1) sense atypical RNAs associated with virus infection. Detection triggers a signalling cascade via the adaptor MAVS that culminates in the production of type I interferons (IFN-alpha and beta; hereafter IFN), which are key antiviral cytokines. RIG-I and MDA5 are activated by distinct viral RNA structures and much evidence indicates that RIG-I responds to RNAs bearing a triphosphate (ppp) moiety in conjunction with a blunt-ended, base-paired region at the 5'-end (reviewed in refs 1, 2, 3). Here we show that RIG-I also mediates antiviral responses to RNAs bearing 5'-diphosphates (5'pp). Genomes from mammalian reoviruses with 5'pp termini, 5'pp-RNA isolated from yeast L-A virus, and base-paired 5'pp-RNAs made by in vitro transcription or chemical synthesis, all bind to RIG-I and serve as RIG-I agonists. Furthermore, a RIG-I-dependent response to 5'pp-RNA is essential for controlling reovirus infection in cultured cells and in mice. Thus, the minimal determinant for RIG-I recognition is a base-paired RNA with 5'pp. Such RNAs are found in some viruses but not in uninfected cells, indicating that recognition of 5'pp-RNA, like that of 5'ppp-RNA, acts as a powerful means of self/non-self discrimination by the innate immune system.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201573/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201573/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goubau, Delphine -- Schlee, Martin -- Deddouche, Safia -- Pruijssers, Andrea J -- Zillinger, Thomas -- Goldeck, Marion -- Schuberth, Christine -- Van der Veen, Annemarthe G -- Fujimura, Tsutomu -- Rehwinkel, Jan -- Iskarpatyoti, Jason A -- Barchet, Winfried -- Ludwig, Janos -- Dermody, Terence S -- Hartmann, Gunther -- Reis e Sousa, Caetano -- A3598/Cancer Research UK/United Kingdom -- MC_UU_12010/8/Medical Research Council/United Kingdom -- R01 AI038296/AI/NIAID NIH HHS/ -- R37 AI038296/AI/NIAID NIH HHS/ -- Cancer Research UK/United Kingdom -- England -- Nature. 2014 Oct 16;514(7522):372-5. doi: 10.1038/nature13590. Epub 2014 Aug 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Immunobiology Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK [2]. ; 1] Institut fur Klinische Chemie und Klinische Pharmakologie, Universitatsklinikum Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany [2]. ; 1] Immunobiology Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK [2] Drosophila Genetics and Epigenetics, Laboratory of Developmental Biology, CNRS UMR7622, Universite Pierre et Marie Curie, Paris, France (S.D.); Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK (J.R.). ; 1] Department of Pediatrics, Vanderbilt University School of Medicine, D7235 Medical Center North, 1161 21st Avenue South, Nashville, Tennessee 37232-2581, USA [2] Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, D7235 Medical Center North, 1161 21st Avenue South, Nashville, Tennessee 37232-2581, USA. ; Institut fur Klinische Chemie und Klinische Pharmakologie, Universitatsklinikum Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany. ; Immunobiology Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK. ; Instituto de Biologia Funcional y Genomica. Consejo Superior de Investigaciones Cientificas/Universidad de Salamanca, Zacarias Gonzalez 2, 37007, Salamanca, Spain. ; 1] Department of Pediatrics, Vanderbilt University School of Medicine, D7235 Medical Center North, 1161 21st Avenue South, Nashville, Tennessee 37232-2581, USA [2] Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, D7235 Medical Center North, 1161 21st Avenue South, Nashville, Tennessee 37232-2581, USA [3] Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, D7235 Medical Center North, 1161 21st Avenue South, Nashville, Tennessee 37232-2581, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119032" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Pairing ; Base Sequence ; DEAD-box RNA Helicases/*metabolism ; Diphosphates/*metabolism ; Female ; Genome, Viral/genetics ; *Immunity, Innate ; Male ; Mice ; RNA, Viral/*chemistry/genetics/*metabolism ; Reoviridae/*genetics/*immunology/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-10-25
    Description: After immunogenic challenge, infiltrating and dividing lymphocytes markedly increase lymph node cellularity, leading to organ expansion. Here we report that the physical elasticity of lymph nodes is maintained in part by podoplanin (PDPN) signalling in stromal fibroblastic reticular cells (FRCs) and its modulation by CLEC-2 expressed on dendritic cells. We show in mouse cells that PDPN induces actomyosin contractility in FRCs via activation of RhoA/C and downstream Rho-associated protein kinase (ROCK). Engagement by CLEC-2 causes PDPN clustering and rapidly uncouples PDPN from RhoA/C activation, relaxing the actomyosin cytoskeleton and permitting FRC stretching. Notably, administration of CLEC-2 protein to immunized mice augments lymph node expansion. In contrast, lymph node expansion is significantly constrained in mice selectively lacking CLEC-2 expression in dendritic cells. Thus, the same dendritic cells that initiate immunity by presenting antigens to T lymphocytes also initiate remodelling of lymph nodes by delivering CLEC-2 to FRCs. CLEC-2 modulation of PDPN signalling permits FRC network stretching and allows for the rapid lymph node expansion--driven by lymphocyte influx and proliferation--that is the critical hallmark of adaptive immunity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4235005/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4235005/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Acton, Sophie E -- Farrugia, Aaron J -- Astarita, Jillian L -- Mourao-Sa, Diego -- Jenkins, Robert P -- Nye, Emma -- Hooper, Steven -- van Blijswijk, Janneke -- Rogers, Neil C -- Snelgrove, Kathryn J -- Rosewell, Ian -- Moita, Luis F -- Stamp, Gordon -- Turley, Shannon J -- Sahai, Erik -- Reis e Sousa, Caetano -- 089009/Wellcome Trust/United Kingdom -- A15689/Cancer Research UK/United Kingdom -- A3598/Cancer Research UK/United Kingdom -- Cancer Research UK/United Kingdom -- England -- Nature. 2014 Oct 23;514(7523):498-502. doi: 10.1038/nature13814.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Immunobiology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK [2] Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK. ; 1] Immunobiology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK [2] Tumour Cell Biology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK. ; Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA. ; Immunobiology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK. ; Tumour Cell Biology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK. ; Experimental Histopathology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK. ; Transgenics Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Potters Bar, Hertfordshire EN6 3LD, UK. ; 1] Instituto Gulbenkian de Ciencia, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal [2] Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal. ; Department of Cancer Immunology, Genentech, One DNA Way, South San Francisco, California 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25341788" target="_blank"〉PubMed〈/a〉
    Keywords: Actomyosin/metabolism ; Animals ; Cell Membrane/metabolism ; Cytoskeleton/metabolism ; Dendritic Cells/immunology/*physiology ; Female ; Fibroblasts/*cytology/physiology ; Inflammation/immunology ; Lectins, C-Type/metabolism ; Lymph Nodes/*cytology/immunology/metabolism ; Male ; Membrane Glycoproteins/metabolism ; Mice ; Stromal Cells/*cytology/physiology ; ras Proteins/metabolism ; rho GTP-Binding Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-10-14
    Description: Double-stranded RNA (dsRNA) produced during viral replication is believed to be the critical trigger for activation of antiviral immunity mediated by the RNA helicase enzymes retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5). We showed that influenza A virus infection does not generate dsRNA and that RIG-I is activated by viral genomic single-stranded RNA (ssRNA) bearing 5'-phosphates. This is blocked by the influenza protein nonstructured protein 1 (NS1), which is found in a complex with RIG-I in infected cells. These results identify RIG-I as a ssRNA sensor and potential target of viral immune evasion and suggest that its ability to sense 5'-phosphorylated RNA evolved in the innate immune system as a means of discriminating between self and nonself.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pichlmair, Andreas -- Schulz, Oliver -- Tan, Choon Ping -- Naslund, Tanja I -- Liljestrom, Peter -- Weber, Friedemann -- Reis e Sousa, Caetano -- New York, N.Y. -- Science. 2006 Nov 10;314(5801):997-1001. Epub 2006 Oct 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunobiology Laboratory, Cancer Research UK, London Research Institute, London WC2A 3PX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17038589" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cells, Cultured ; Cytoplasm/metabolism/virology ; DEAD-box RNA Helicases/genetics/*metabolism ; Dendritic Cells/virology ; Encephalomyocarditis virus/genetics/immunology/metabolism ; Genome, Viral ; Humans ; *Immunity, Innate ; Influenza A virus/*genetics/*immunology/metabolism/physiology ; Interferon-alpha/biosynthesis ; Interferon-beta/biosynthesis ; Mice ; Mice, Inbred C57BL ; Phosphates/metabolism ; Phosphorylation ; RNA Caps/metabolism ; RNA, Double-Stranded/metabolism ; RNA, Viral/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Transfection ; Vesicular stomatitis Indiana virus/genetics/immunology/metabolism ; Viral Nonstructural Proteins/genetics/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-01-16
    Description: Virus infection in mammals elicits a variety of defense responses that are initiated by signals from virus-sensing receptors expressed by the host. These receptors include the ubiquitously expressed RIG-I-like receptor (RLR) family of RNA helicases. RLRs are cytoplasmic proteins that act in cell-intrinsic antiviral defense by recognizing RNAs indicative of virus presence. Here, we highlight recent progress in understanding how RLRs discriminate between the RNA content of healthy versus virus-infected cells, functioning as accurate sensors of virus invasion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rehwinkel, Jan -- Reis e Sousa, Caetano -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2010 Jan 15;327(5963):284-6. doi: 10.1126/science.1185068.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunobiology Laboratory, Cancer Research UK (CRUK) London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20075242" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Pairing ; DEAD-box RNA Helicases/chemistry/immunology/*metabolism ; Genome, Viral ; Humans ; *Immunity, Innate ; Interferons/biosynthesis ; Nucleic Acid Conformation ; Protein Structure, Tertiary ; RNA Virus Infections/*immunology ; RNA Viruses/genetics/*immunology ; RNA, Double-Stranded/immunology/metabolism ; RNA, Viral/chemistry/*immunology/*metabolism ; Receptors, Pattern Recognition/chemistry/immunology/*metabolism ; Signal Transduction ; Viral Proteins/immunology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-02-07
    Description: The layer of macrophages at the subcapsular sinus (SCS) captures pathogens entering the lymph node, preventing their global dissemination and triggering an immune response. However, how infection affects SCS macrophages remains largely unexplored. Here we show that infection and inflammation disrupt the organization of SCS macrophages in a manner that involves the migration of mature dendritic cells to the lymph node. This disrupted organization reduces the capacity of SCS macrophages to retain and present antigen in a subsequent secondary infection, resulting in diminished B cell responses. Thus, the SCS macrophage layer may act as a sensor or valve during infection to temporarily shut down the lymph node to further antigenic challenge. This shutdown may increase an organism's susceptibility to secondary infections.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gaya, Mauro -- Castello, Angelo -- Montaner, Beatriz -- Rogers, Neil -- Reis e Sousa, Caetano -- Bruckbauer, Andreas -- Batista, Facundo D -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2015 Feb 6;347(6222):667-72. doi: 10.1126/science.aaa1300.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lymphocyte Interaction Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK. ; Immunobiology Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK. ; Lymphocyte Interaction Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK. facundo.batista@cancer.org.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25657250" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens/immunology ; B-Lymphocytes/*immunology/pathology ; Cell Movement/*immunology ; Coinfection/*immunology ; Dendritic Cells/immunology ; Inflammation/*immunology ; Lymph Nodes/immunology/pathology ; Macrophages/*immunology/pathology ; Mice ; Mice, Inbred C57BL ; Staphylococcal Skin Infections/*immunology ; *Staphylococcus aureus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-09-26
    Description: Dying cells initiate adaptive immunity by providing both antigens and inflammatory stimuli for dendritic cells, which in turn activate CD8(+) T cells through a process called antigen cross-priming. To define how different forms of programmed cell death influence immunity, we established models of necroptosis and apoptosis, in which dying cells are generated by receptor-interacting protein kinase-3 and caspase-8 dimerization, respectively. We found that the release of inflammatory mediators, such as damage-associated molecular patterns, by dying cells was not sufficient for CD8(+) T cell cross-priming. Instead, robust cross-priming required receptor-interacting protein kinase-1 (RIPK1) signaling and nuclear factor kappaB (NF-kappaB)-induced transcription within dying cells. Decoupling NF-kappaB signaling from necroptosis or inflammatory apoptosis reduced priming efficiency and tumor immunity. Our results reveal that coordinated inflammatory and cell death signaling pathways within dying cells orchestrate adaptive immunity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4651449/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4651449/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yatim, Nader -- Jusforgues-Saklani, Helene -- Orozco, Susana -- Schulz, Oliver -- Barreira da Silva, Rosa -- Reis e Sousa, Caetano -- Green, Douglas R -- Oberst, Andrew -- Albert, Matthew L -- 5R01AI108685-02/AI/NIAID NIH HHS/ -- AI44848/AI/NIAID NIH HHS/ -- R01 AI108685/AI/NIAID NIH HHS/ -- R01AI108685/AI/NIAID NIH HHS/ -- R21 CA185681/CA/NCI NIH HHS/ -- R21CA185681/CA/NCI NIH HHS/ -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2015 Oct 16;350(6258):328-34. doi: 10.1126/science.aad0395. Epub 2015 Sep 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Dendritic Cell Biology, Department of Immunology, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France. Institut National de la Sante et de la Recherche Medicale, U818, 25 Rue du Docteur Roux, 75015 Paris, France. Frontieres du Vivant Doctoral School, Ecole Doctorale 474, Universite Paris Diderot-Paris 7, Sorbonne Paris Cite, 8-10 Rue Charles V, 75004 Paris, France. ; Laboratory of Dendritic Cell Biology, Department of Immunology, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France. Institut National de la Sante et de la Recherche Medicale, U818, 25 Rue du Docteur Roux, 75015 Paris, France. ; Department of Immunology, University of Washington, Campus Box 358059, 750 Republican Street, Seattle, WA 98109, USA. ; Immunobiology Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK. ; Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26405229" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/*immunology ; CD8-Positive T-Lymphocytes/*immunology ; Caspase 8/metabolism ; Cell Survival ; Cross-Priming ; Dendritic Cells/immunology ; Mice ; Mice, Inbred C57BL ; NF-kappa B/*metabolism ; NIH 3T3 Cells ; Receptor-Interacting Protein Serine-Threonine Kinases/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-10-10
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...