ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-11-20
    Description: When used in combination with raster scanning, small-angle X-ray scattering (SAXS) has proven to be a valuable imaging technique of the nanoscale, for example of bone, teeth and brain matter. Although two-dimensional projection imaging has been used to characterize various materials successfully, its three-dimensional extension, SAXS computed tomography, poses substantial challenges, which have yet to be overcome. Previous work using SAXS computed tomography was unable to preserve oriented SAXS signals during reconstruction. Here we present a solution to this problem and obtain a complete SAXS computed tomography, which preserves oriented scattering information. By introducing virtual tomography axes, we take advantage of the two-dimensional SAXS information recorded on an area detector and use it to reconstruct the full three-dimensional scattering distribution in reciprocal space for each voxel of the three-dimensional object in real space. The presented method could be of interest for a combined six-dimensional real and reciprocal space characterization of mesoscopic materials with hierarchically structured features with length scales ranging from a few nanometres to a few millimetres--for example, biomaterials such as bone or teeth, or functional materials such as fuel-cell or battery components.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schaff, Florian -- Bech, Martin -- Zaslansky, Paul -- Jud, Christoph -- Liebi, Marianne -- Guizar-Sicairos, Manuel -- Pfeiffer, Franz -- England -- Nature. 2015 Nov 19;527(7578):353-6. doi: 10.1038/nature16060.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lehrstuhl fur Biomedizinische Physik, Physik-Department &Institut fur Medizintechnik, Technische Universitat Munchen, 85748 Garching, Germany. ; Department of Medical Radiation Physics, Clinical Sciences, Lund, Lund University, 22185 Lund, Sweden. ; Julius Wolff Institute, Charite - Universitatsmedizin Berlin, 13353 Berlin, Germany. ; Paul Scherrer Institut, 5232 Villigen PSI, Switzerland. ; Institut fur diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Technische Universitat Munchen, 81675 Munchen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26581292" target="_blank"〉PubMed〈/a〉
    Keywords: Collagen/ultrastructure ; Humans ; Imaging, Three-Dimensional/methods ; Nanostructures/ultrastructure ; *Scattering, Small Angle ; Tomography/*methods ; Tooth/ultrastructure ; *X-Ray Diffraction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-07-23
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-24
    Description: A mortality review of death caused by injury requires a determination of injury survivability prior to a determination of death preventability. If injuries are nonsurvivable, only non-medical primary prevention strategies have potential to prevent the death. Therefore, objective measures are needed to empirically inform injury survivability from complex anatomic patterns of injury. As a component of injury mortality reviews, network structures show promise to objectively elucidate survivability from complex anatomic patterns of injury resulting from explosive and firearm mechanisms. In this network analysis of 5,703 critically injured combat casualties, patterns of injury among fatalities from explosive mechanisms were associated with both a higher number and severity of anatomic injuries to regions such as the extremities, abdomen, and thorax. Patterns of injuries from a firearm were more isolated to individual body regions with fatal patterns involving more severe injuries to the head and thorax. Each injury generates a specific level of risk as part of an overall anatomic pattern to inform injury survivability not always captured by traditional trauma scoring systems. Network models have potential to further elucidate differences between potentially survivable and nonsurvivable anatomic patterns of injury as part of the mortality review process relevant to improving both the military and civilian trauma care systems.
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-11
    Description: A growing body of literature on military personnel and veterans’ health suggests that prior military service may be associated with exposures that increase the risk of cardiovascular disease (CVD), which may differ by race/ethnicity. This study examined the hypothesis that differential telomere shortening, a measure of cellular aging, by race/ethnicity may explain prior findings of differential CVD risk in racial/ethnic groups with military service. Data from the first two continuous waves of the National Health and Nutrition Examination Survey (NHANES), administered from 1999–2002 were analyzed. Mean telomere length in base pairs was analyzed with multivariable adjusted linear regression with complex sample design, stratified by sex. The unadjusted mean telomere length was 225.8 base shorter for individuals with prior military service. The mean telomere length for men was 47.2 (95% CI: −92.9, −1.5; p 〈 0.05) base pairs shorter for men with military service after adjustment for demographic, socioeconomic, and behavioral variables, but did not differ significantly in women with and without prior military service. The interaction between military service and race/ethnicity was not significant for men or women. The results suggest that military service may contribute to accelerated aging as a result of health damaging exposures, such as combat, injury, and environmental contaminants, though other unmeasured confounders could also potentially explain the results.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...