ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-10-05
    Description: Approximately 2% of colorectal cancer is linked to pre-existing inflammation known as colitis-associated cancer, but most develops in patients without underlying inflammatory bowel disease. Colorectal cancer often follows a genetic pathway whereby loss of the adenomatous polyposis coli (APC) tumour suppressor and activation of beta-catenin are followed by mutations in K-Ras, PIK3CA and TP53, as the tumour emerges and progresses. Curiously, however, 'inflammatory signature' genes characteristic of colitis-associated cancer are also upregulated in colorectal cancer. Further, like most solid tumours, colorectal cancer exhibits immune/inflammatory infiltrates, referred to as 'tumour-elicited inflammation'. Although infiltrating CD4(+) T(H)1 cells and CD8(+) cytotoxic T cells constitute a positive prognostic sign in colorectal cancer, myeloid cells and T-helper interleukin (IL)-17-producing (T(H)17) cells promote tumorigenesis, and a 'T(H)17 expression signature' in stage I/II colorectal cancer is associated with a drastic decrease in disease-free survival. Despite its pathogenic importance, the mechanisms responsible for the appearance of tumour-elicited inflammation are poorly understood. Many epithelial cancers develop proximally to microbial communities, which are physically separated from immune cells by an epithelial barrier. We investigated mechanisms responsible for tumour-elicited inflammation in a mouse model of colorectal tumorigenesis, which, like human colorectal cancer, exhibits upregulation of IL-23 and IL-17. Here we show that IL-23 signalling promotes tumour growth and progression, and development of a tumoural IL-17 response. IL-23 is mainly produced by tumour-associated myeloid cells that are likely to be activated by microbial products, which penetrate the tumours but not adjacent tissue. Both early and late colorectal neoplasms exhibit defective expression of several barrier proteins. We propose that barrier deterioration induced by colorectal-cancer-initiating genetic lesions results in adenoma invasion by microbial products that trigger tumour-elicited inflammation, which in turn drives tumour growth.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601659/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601659/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grivennikov, Sergei I -- Wang, Kepeng -- Mucida, Daniel -- Stewart, C Andrew -- Schnabl, Bernd -- Jauch, Dominik -- Taniguchi, Koji -- Yu, Guann-Yi -- Osterreicher, Christoph H -- Hung, Kenneth E -- Datz, Christian -- Feng, Ying -- Fearon, Eric R -- Oukka, Mohamed -- Tessarollo, Lino -- Coppola, Vincenzo -- Yarovinsky, Felix -- Cheroutre, Hilde -- Eckmann, Lars -- Trinchieri, Giorgio -- Karin, Michael -- AI043477/AI/NIAID NIH HHS/ -- DK035108/DK/NIDDK NIH HHS/ -- DK080506/DK/NIDDK NIH HHS/ -- K08 DK081830/DK/NIDDK NIH HHS/ -- K99 DK088589/DK/NIDDK NIH HHS/ -- K99-DK088589/DK/NIDDK NIH HHS/ -- R01 AA020703/AA/NIAAA NIH HHS/ -- R01 AI043477/AI/NIAID NIH HHS/ -- R01 AI050265/AI/NIAID NIH HHS/ -- R01 CA082223/CA/NCI NIH HHS/ -- R01CA082223/CA/NCI NIH HHS/ -- England -- Nature. 2012 Nov 8;491(7423):254-8. doi: 10.1038/nature11465.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0723, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23034650" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoma/genetics/immunology/*microbiology/*pathology ; Animals ; Bacteria/metabolism/pathogenicity ; Cell Division ; Cell Transformation, Neoplastic/*pathology ; Colitis/complications ; Colorectal Neoplasms/genetics/immunology/*microbiology/*pathology ; Disease Models, Animal ; Disease-Free Survival ; Genes, APC ; Humans ; Inflammation/genetics/immunology/microbiology/pathology ; Interleukin-17/genetics/*immunology ; Interleukin-23/deficiency/genetics/*immunology ; Mice ; Mice, Inbred C57BL ; Myeloid Cells/immunology/metabolism ; Myeloid Differentiation Factor 88/immunology/metabolism ; Signal Transduction ; Toll-Like Receptors/immunology/metabolism ; Tumor Microenvironment ; beta Catenin/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2011-01-05
    Description: Cirrhosis is the end result of chronic liver disease. Hepatic stellate cells (HSC) are believed to be the major source of collagen-producing myofibroblasts in cirrhotic livers. Portal fibroblasts, bone marrow-derived cells, and epithelial to mesenchymal transition (EMT) might also contribute to the myofibroblast population in damaged livers. Fibroblast-specific protein 1 (FSP1, also called S100A4) is considered a marker of fibroblasts in different organs undergoing tissue remodeling and is used to identify fibroblasts derived from EMT in several organs including the liver. The aim of this study was to characterize FSP1-positive cells in human and experimental liver disease. FSP1-positive cells were increased in human and mouse experimental liver injury including liver cancer. However, FSP1 was not expressed by HSC or type I collagen-producing fibroblasts. Likewise, FSP1-positive cells did not express classical myofibroblast markers, including αSMA and desmin, and were not myofibroblast precursors in injured livers as evaluated by genetic lineage tracing experiments. Surprisingly, FSP1-positive cells expressed F4/80 and other markers of the myeloid-monocytic lineage as evaluated by double immunofluorescence staining, cell fate tracking, flow cytometry, and transcriptional profiling. Similar results were obtained for bone marrow-derived and peritoneal macrophages. FSP1-positive cells were characterized by increased expression of COX2, osteopontin, inflammatory cytokines, and chemokines but reduced expression of MMP3 and TIMP3 compared with Kupffer cells/macrophages. These findings suggest that FSP1 is a marker of a specific subset of inflammatory macrophages in liver injury, fibrosis, and cancer.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...