ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-02-02
    Description: Alternative splicing and polyadenylation were observed pervasively in eukaryotic messenger RNAs. These alternative isoforms could either be consequences of physiological regulation or stochastic noise of RNA processing. To quantify the extent of stochastic noise in splicing and polyadenylation, we analyzed the alternative usage of splicing and polyadenylation sites in Entamoeba histolytica using RNA-Seq. First, we identified a large number of rarely spliced alternative junctions and then showed that the occurrence of these alternative splicing events is correlated with splicing site sequence, occurrence of constitutive splicing events and messenger RNA abundance. Our results implied the majority of these alternative splicing events are likely to be stochastic error of splicing machineries, and we estimated the corresponding error rates. Second, we observed extensive microheterogeneity of polyadenylation cleavage sites, and the extent of such microheterogeneity is correlated with the occurrence of constitutive cleavage events, suggesting most of such microheterogeneity is likely to be stochastic. Overall, we only observed a small fraction of alternative splicing and polyadenylation isoforms that are unlikely to be solely stochastic, implying the functional relevance of alternative splicing and polyadenylation in E. histolytica is limited . Lastly, we revised the gene models and annotated their 3'UTR in AmoebaDB, providing valuable resources to the community.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-17
    Description: To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species. Among Passerea, we infer the common ancestor of core landbirds to have been an apex predator and confirm independent gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved challenging to resolve, which was best explained by massive protein-coding sequence convergence and high levels of incomplete lineage sorting that occurred during a rapid radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405904/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405904/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jarvis, Erich D -- Mirarab, Siavash -- Aberer, Andre J -- Li, Bo -- Houde, Peter -- Li, Cai -- Ho, Simon Y W -- Faircloth, Brant C -- Nabholz, Benoit -- Howard, Jason T -- Suh, Alexander -- Weber, Claudia C -- da Fonseca, Rute R -- Li, Jianwen -- Zhang, Fang -- Li, Hui -- Zhou, Long -- Narula, Nitish -- Liu, Liang -- Ganapathy, Ganesh -- Boussau, Bastien -- Bayzid, Md Shamsuzzoha -- Zavidovych, Volodymyr -- Subramanian, Sankar -- Gabaldon, Toni -- Capella-Gutierrez, Salvador -- Huerta-Cepas, Jaime -- Rekepalli, Bhanu -- Munch, Kasper -- Schierup, Mikkel -- Lindow, Bent -- Warren, Wesley C -- Ray, David -- Green, Richard E -- Bruford, Michael W -- Zhan, Xiangjiang -- Dixon, Andrew -- Li, Shengbin -- Li, Ning -- Huang, Yinhua -- Derryberry, Elizabeth P -- Bertelsen, Mads Frost -- Sheldon, Frederick H -- Brumfield, Robb T -- Mello, Claudio V -- Lovell, Peter V -- Wirthlin, Morgan -- Schneider, Maria Paula Cruz -- Prosdocimi, Francisco -- Samaniego, Jose Alfredo -- Vargas Velazquez, Amhed Missael -- Alfaro-Nunez, Alonzo -- Campos, Paula F -- Petersen, Bent -- Sicheritz-Ponten, Thomas -- Pas, An -- Bailey, Tom -- Scofield, Paul -- Bunce, Michael -- Lambert, David M -- Zhou, Qi -- Perelman, Polina -- Driskell, Amy C -- Shapiro, Beth -- Xiong, Zijun -- Zeng, Yongli -- Liu, Shiping -- Li, Zhenyu -- Liu, Binghang -- Wu, Kui -- Xiao, Jin -- Yinqi, Xiong -- Zheng, Qiuemei -- Zhang, Yong -- Yang, Huanming -- Wang, Jian -- Smeds, Linnea -- Rheindt, Frank E -- Braun, Michael -- Fjeldsa, Jon -- Orlando, Ludovic -- Barker, F Keith -- Jonsson, Knud Andreas -- Johnson, Warren -- Koepfli, Klaus-Peter -- O'Brien, Stephen -- Haussler, David -- Ryder, Oliver A -- Rahbek, Carsten -- Willerslev, Eske -- Graves, Gary R -- Glenn, Travis C -- McCormack, John -- Burt, Dave -- Ellegren, Hans -- Alstrom, Per -- Edwards, Scott V -- Stamatakis, Alexandros -- Mindell, David P -- Cracraft, Joel -- Braun, Edward L -- Warnow, Tandy -- Jun, Wang -- Gilbert, M Thomas P -- Zhang, Guojie -- DP1 OD000448/OD/NIH HHS/ -- DP1OD000448/OD/NIH HHS/ -- R24 GM092842/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1320-31. doi: 10.1126/science.1253451.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Howard Hughes Medical Institute (HHMI), and Duke University Medical Center, Durham, NC 27710, USA. jarvis@neuro.duke.edu tandywarnow@gmail.com mtpgilbert@gmail.com wangj@genomics.cn zhanggj@genomics.cn. ; Department of Computer Science, The University of Texas at Austin, Austin, TX 78712, USA. ; Scientific Computing Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany. ; China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China. College of Medicine and Forensics, Xi'an Jiaotong University Xi'an 710061, China. Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. ; Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA. ; China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China. Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. ; School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia. ; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA. Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA. ; CNRS UMR 5554, Institut des Sciences de l'Evolution de Montpellier, Universite Montpellier II Montpellier, France. ; Department of Neurobiology, Howard Hughes Medical Institute (HHMI), and Duke University Medical Center, Durham, NC 27710, USA. ; Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala Sweden. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. ; China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China. ; Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA. Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Onna-son, Okinawa 904-0495, Japan. ; Department of Statistics and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA. ; Laboratoire de Biometrie et Biologie Evolutive, Centre National de la Recherche Scientifique, Universite de Lyon, F-69622 Villeurbanne, France. ; Environmental Futures Research Institute, Griffith University, Nathan, Queensland 4111, Australia. ; Bioinformatics and Genomics Programme, Centre for Genomic Regulation, Dr. Aiguader 88, 08003 Barcelona, Spain. Universitat Pompeu Fabra, Barcelona, Spain. Institucio Catalana de Recerca i Estudis Avancats, Barcelona, Spain. ; Bioinformatics and Genomics Programme, Centre for Genomic Regulation, Dr. Aiguader 88, 08003 Barcelona, Spain. Universitat Pompeu Fabra, Barcelona, Spain. ; Joint Institute for Computational Sciences, The University of Tennessee, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA. ; Bioinformatics Research Centre, Aarhus University, DK-8000 Aarhus C, Denmark. ; The Genome Institute, Washington University School of Medicine, St Louis, MI 63108, USA. ; Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA. ; Department of Ecology and Evolutionary Biology, University of California Santa Cruz (UCSC), Santa Cruz, CA 95064, USA. ; Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University Cardiff CF10 3AX, Wales, UK. ; Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University Cardiff CF10 3AX, Wales, UK. Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. ; International Wildlife Consultants, Carmarthen SA33 5YL, Wales, UK. ; College of Medicine and Forensics, Xi'an Jiaotong University Xi'an, 710061, China. ; State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, China. ; Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA. Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA. ; Center for Zoo and Wild Animal Health, Copenhagen Zoo Roskildevej 38, DK-2000 Frederiksberg, Denmark. ; Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA. ; Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA. Brazilian Avian Genome Consortium (CNPq/FAPESPA-SISBIO Aves), Federal University of Para, Belem, Para, Brazil. ; Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA. ; Brazilian Avian Genome Consortium (CNPq/FAPESPA-SISBIO Aves), Federal University of Para, Belem, Para, Brazil. Institute of Biological Sciences, Federal University of Para, Belem, Para, Brazil. ; Brazilian Avian Genome Consortium (CNPq/FAPESPA-SISBIO Aves), Federal University of Para, Belem, Para, Brazil. Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941-902, Brazil. ; Centre for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark Kemitorvet 208, 2800 Kgs Lyngby, Denmark. ; Breeding Centre for Endangered Arabian Wildlife, Sharjah, United Arab Emirates. ; Dubai Falcon Hospital, Dubai, United Arab Emirates. ; Canterbury Museum Rolleston Avenue, Christchurch 8050, New Zealand. ; Trace and Environmental DNA Laboratory Department of Environment and Agriculture, Curtin University, Perth, Western Australia 6102, Australia. ; Department of Integrative Biology, University of California, Berkeley, CA 94720, USA. ; Laboratory of Genomic Diversity, National Cancer Institute Frederick, MD 21702, USA. Institute of Molecular and Cellular Biology, SB RAS and Novosibirsk State University, Novosibirsk, Russia. ; Smithsonian Institution National Museum of Natural History, Washington, DC 20013, USA. ; BGI-Shenzhen, Shenzhen 518083, China. ; Department of Biological Sciences, National University of Singapore, Republic of Singapore. ; Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Suitland, MD 20746, USA. ; Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark. ; Bell Museum of Natural History, University of Minnesota, Saint Paul, MN 55108, USA. ; Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark. Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK. Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK. ; Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA 22630, USA. ; Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20008, USA. ; Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia 199004. Oceanographic Center, Nova Southeastern University, Ft Lauderdale, FL 33004, USA. ; Center for Biomolecular Science and Engineering, UCSC, Santa Cruz, CA 95064, USA. ; San Diego Zoo Institute for Conservation Research, Escondido, CA 92027, USA. ; Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark. Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK. ; Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark. Department of Vertebrate Zoology, MRC-116, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA. ; Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA. ; Moore Laboratory of Zoology and Department of Biology, Occidental College, Los Angeles, CA 90041, USA. ; Department of Genomics and Genetics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK. ; Swedish Species Information Centre, Swedish University of Agricultural Sciences Box 7007, SE-750 07 Uppsala, Sweden. Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. ; Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA. ; Scientific Computing Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany. Institute of Theoretical Informatics, Department of Informatics, Karlsruhe Institute of Technology, D- 76131 Karlsruhe, Germany. ; Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA. ; Department of Ornithology, American Museum of Natural History, New York, NY 10024, USA. ; Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA. ; Department of Computer Science, The University of Texas at Austin, Austin, TX 78712, USA. Departments of Bioengineering and Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. jarvis@neuro.duke.edu tandywarnow@gmail.com mtpgilbert@gmail.com wangj@genomics.cn zhanggj@genomics.cn. ; BGI-Shenzhen, Shenzhen 518083, China. Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark. Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia. Macau University of Science and Technology, Avenida Wai long, Taipa, Macau 999078, China. Department of Medicine, University of Hong Kong, Hong Kong. jarvis@neuro.duke.edu tandywarnow@gmail.com mtpgilbert@gmail.com wangj@genomics.cn zhanggj@genomics.cn. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. Trace and Environmental DNA Laboratory Department of Environment and Agriculture, Curtin University, Perth, Western Australia 6102, Australia. jarvis@neuro.duke.edu tandywarnow@gmail.com mtpgilbert@gmail.com wangj@genomics.cn zhanggj@genomics.cn. ; China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China. Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark. jarvis@neuro.duke.edu tandywarnow@gmail.com mtpgilbert@gmail.com wangj@genomics.cn zhanggj@genomics.cn.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504713" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Avian Proteins/genetics ; Base Sequence ; Biological Evolution ; Birds/classification/*genetics ; DNA Transposable Elements ; Genes ; Genetic Speciation ; *Genome ; INDEL Mutation ; Introns ; *Phylogeny ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-04-02
    Description: A series of indirectly driven capsule implosions has been performed on the National Ignition Facility to assess the relative contributions of ablation-front instability growth vs. fuel compression on implosion performance. Laser pulse shapes for both low and high-foot pulses were modified to vary ablation-front growth and fuel adiabat, separately and controllably. Three principal conclusions are drawn from this study: (1) It is shown that reducing ablation-front instability growth in low-foot implosions results in a substantial (3-10X) increase in neutron yield with no loss of fuel compression. (2) It is shown that reducing the fuel adiabat in high-foot implosions results in a significant (36%) increase in fuel compression together with a small (10%) increase in neutron yield. (3) Increased electron preheat at higher laser power in high-foot implosions, however, appears to offset the gain in compression achieved by adiabat-shaping at lower power. These results taken collectively bridge the space between the higher compression low-foot results and the higher yield high-foot results.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2007-02-12
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-28
    Description: Radiation-driven, layered deuterium-tritium plastic capsule implosions were carried out using a new, 3-shock “adiabat-shaped” drive on the National Ignition Facility. The purpose of adiabat shaping is to use a stronger first shock, reducing hydrodynamic instability growth in the ablator. The shock can decay before reaching the deuterium-tritium fuel leaving it on a low adiabat and allowing higher fuel compression. The fuel areal density was improved by ∼25% with this new drive compared to similar “high-foot” implosions, while neutron yield was improved by more than 4 times, compared to “low-foot” implosions driven at the same compression and implosion velocity.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-10-19
    Description: Macrophage migration inhibitory factor (MIF) is a pleiotropic inflammatory cytokine that has been implicated in various inflammatory diseases. Chronic inflammation is a mainstay of liver fibrosis, a leading cause of morbidity worldwide, but the role of MIF in liver scarring has not yet been elucidated. Here we have uncovered an unexpected antifibrotic role for MIF. Mice genetically deleted in Mif (Mif−/−) showed strongly increased fibrosis in two models of chronic liver injury. Pronounced liver fibrosis in Mif−/− mice was associated with alterations in fibrosis-relevant genes, but not by a changed intrahepatic immune cell infiltration. Next, a direct impact of MIF on hepatic stellate cells (HSC) was assessed in vitro. Although MIF alone had only marginal effects on HSCs, it markedly inhibited PDGF-induced migration and proliferation of these cells. The inhibitory effects of MIF were mediated by CD74, which we detected as the most abundant known MIF receptor on HSCs. MIF promoted the phosphorylation of AMP-activated protein kinase (AMPK) in a CD74-dependent manner and, in turn, inhibition of AMPK reversed the inhibition of PDGF-induced HSC activation by MIF. The pivotal role of CD74 in MIF-mediated antifibrotic properties was further supported by augmented liver scarring of Cd74−/− mice. Moreover, mice treated with recombinant MIF displayed a reduced fibrogenic response in vivo. In conclusion, we describe a previously unexplored antifibrotic function of MIF that is mediated by the CD74/AMPK signaling pathway in HSCs. The results imply MIF and CD74 as targets for treatment of liver diseases.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-05-25
    Description: Despite the emergence of regional climate policies, growth in global CO2 emissions has remained strong. From 1990 to 2008 CO2 emissions in developed countries (defined as countries with emission-reduction commitments in the Kyoto Protocol, Annex B) have stabilized, but emissions in developing countries (non-Annex B) have doubled. Some studies suggest that the stabilization of emissions in developed countries was partially because of growing imports from developing countries. To quantify the growth in emission transfers via international trade, we developed a trade-linked global database for CO2 emissions covering 113 countries and 57 economic sectors from 1990 to 2008. We find that the emissions from the production of traded goods and services have increased from 4.3 Gt CO2 in 1990 (20% of global emissions) to 7.8 Gt CO2 in 2008 (26%). Most developed countries have increased their consumption-based emissions faster than their territorial emissions, and non–energy-intensive manufacturing had a key role in the emission transfers. The net emission transfers via international trade from developing to developed countries increased from 0.4 Gt CO2 in 1990 to 1.6 Gt CO2 in 2008, which exceeds the Kyoto Protocol emission reductions. Our results indicate that international trade is a significant factor in explaining the change in emissions in many countries, from both a production and consumption perspective. We suggest that countries monitor emission transfers via international trade, in addition to territorial emissions, to ensure progress toward stabilization of global greenhouse gas emissions.
    Keywords: Sustainability Science
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-10-18
    Description: Radiation-driven, layered deuterium-tritium (DT) implosions were carried out using 3-shock and 4-shock “adiabat-shaped” drives and plastic ablators on the National Ignition Facility (NIF) [E. M. Campbell et al. , AIP Conf. Proc. 429 , 3 (1998)]. The purpose of these shots was to gain further understanding on the relative performance of the low-foot implosions of the National Ignition Campaign [M. J. Edwards et al ., Phys. Plasmas 20 , 070501 (2013)] versus the subsequent high-foot implosions [T. Döppner et al ., Phys. Rev. Lett. 115 , 055001 (2015)]. The neutron yield performance in the experiment with the 4-shock adiabat-shaped drive was improved by factors ∼3 to ∼10, compared to five companion low-foot shots despite large low-mode asymmetries of DT fuel, while measured compression was similar to its low-foot companions. This indicated that the dominant degradation source for low-foot implosions was ablation-front instability growth, since adiabat shaping significantly stabilized this growth. For the experiment with the low-power 3-shock adiabat-shaped drive, the DT fuel compression was significantly increased, by ∼25% to ∼36%, compared to its companion high-foot implosions. The neutron yield increased by ∼20%, lower than the increase of ∼50% estimated from one-dimensional scaling, suggesting the importance of residual instabilities and asymmetries. For the experiment with the high-power, 3-shock adiabat-shaped drive, the DT fuel compression was slightly increased by ∼14% compared to its companion high-foot experiments. However, the compression was reduced compared to the lower-power 3-shock adiabat-shaped drive, correlated with the increase of hot electrons that hypothetically can be responsible for reduced compression in high-power adiabat-shaped experiments as well as in high-foot experiments. The total neutron yield in the high-power 3-shock adiabat-shaped shot N150416 was 8.5 × 10 15  ± 0.2 × 10 15 , with the fuel areal density of 0.90 ± 0.07 g/cm 2 , corresponding to the ignition threshold factor parameter IFTX (calculated without alpha heating) of 0.34 ± 0.03 and the yield amplification due to the alpha heating of 2.4 ± 0.2. The performance parameters were among the highest of all shots on NIF and the closest to ignition at this time, based on the IFTX metric. The follow-up experiments were proposed to continue testing physics hypotheses, to measure implosion reproducibility, and to improve quantitative understanding on present implosion results.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-06-28
    Description: The emergence and future of mammalian synthetic biology depends on technologies for orchestrating and custom tailoring complementary gene expression and signaling processes in a predictable manner. Here, we demonstrate for the first time multi-chromatic expression control in mammalian cells by differentially inducing up to three genes in a single cell culture in response to light of different wavelengths. To this end, we developed an ultraviolet B (UVB)-inducible expression system by designing a UVB-responsive split transcription factor based on the Arabidopsis thaliana UVB receptor UVR8 and the WD40 domain of COP1. The system allowed high (up to 800-fold) UVB-induced gene expression in human, monkey, hamster and mouse cells. Based on a quantitative model, we determined critical system parameters. By combining this UVB-responsive system with blue and red light-inducible gene control technology, we demonstrate multi-chromatic multi-gene control by differentially expressing three genes in a single cell culture in mammalian cells, and we apply this system for the multi-chromatic control of angiogenic signaling processes. This portfolio of optogenetic tools enables the design and implementation of synthetic biological networks showing unmatched spatiotemporal precision for future research and biomedical applications.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...